

Commissioning of Radiative Decay Counter for MEG II Experiment in 2018

Rina Onda
On behalf of MEG II collaboration
The University of Tokyo

$\mu \rightarrow e \gamma Search$

- charged Lepton Flavor Violation (cLFV)
- Good probe for new physics
 - Standard Model: Br < 10⁻⁵⁰
 - New physics : Br $\sim 10^{-12}$ 10^{-14}

• The most stringent limit, 4.2 \times 10 $^{\text{-}13}$ (90% C.L.) was given by MEG experiment

MEG II Experiment

Upgraded from MEG

- μ^+ beam stopping rate $3 \times 10^7~\mu^+$ stops/s $o 7 \times 10^7~\mu^+$ stops/s
- Improved efficiency and resolution of each detector
- Installed a new detector for BG detection

Expected sensitivity:

$$5.3 \times 10^{-13} \rightarrow 6 \times 10^{-14}$$

BG detector

Signal & BG in MEG II

Radiative Decay Counter (RDC)

- Newly installed in MEG II
- Identify RMD events by detecting low energy e⁺ deriving from RMD
 - \rightarrow time coincidence with γ detected by LXe

Downstream RDC

20 cm

RDC e⁺ Energy

- Timing measurement
 - 12 plastic scintillators (PS)
 - 2, 3 SiPMs on each side in series connection
- Energy measurement
 - 76 LYSO crystals
 - 1 SiPM on the back of one crystal

Commissioning Run in 2018

- \bullet Commissioning run using μ^+ beam was performed to confirm the performance
- Improvement from 2017
 - O Better understanding for γ trigger
 - \triangleright LXe energy scale was measured by monochromatic γ source
 - ABG measurement in the final configuration
 - > CDCH was installed for the first time
 - \times Higher beam intensity (3.2 \times 10⁷ μ + stops/s \rightarrow 7.0 \times 10⁷ μ + stops/s)
 - > Electronics was exchanged to flow higher current in SiPM attached to LYSO
 - > Not achieved due to beam issues (see the next slides)
 - Better energy calibration for LYSO
 - Corrections of Energy Scale factor were applied

Beam Issues

RDC Hit Position

Some strange behaviors were observed by RDC, which never happened before

- The center of hit positions was off the center of RDC
- Total hit rate was ten times higher than expectation
- The highest hit rate per channel was 40 times while the lowest was consistent with MC
- Too high current flowed in some channels (40 times larger than expected)

Timing Correlation w/ RF

- There is a correlation b/w RDC hit timing and accelerator Radio Frequency (RF) timing
- The peak interval, 19.75 ns, was consistent with RF
 contamination in beam?
- Eight times e⁺ are contained in beam, but basically they must be excluded by a separator
 Not excluded for some reasons?

DAQ Configuration

- Could not fix the problem, and so decided to take data with lower intensity, $8\times10^6~\mu^+$ stops/s
 - to avoid too high current
 - to avoid radiation damage

Not affect RMD detection performance though BG rate is higher than expected
 LXe Event Display

• γ trigger by LXe (E $_{\gamma}$ > 45MeV) (limited readout channels due to electronics)

LYSO Energy Calibration

Example of Fitting

- Saint-Gobain, PreLudeTM 420 data sheet
- 176 Lu in LYSO decays emitting γ and β
- LYSO was calibrated using the 597 keV peak in self-radiation spectrum Fit function : γ peaks + β decay spectrum
- Energy is reconstructed by $E=charge \times ES$ \leftarrow calculate ES by the calibration

Correction of ES Factor

correlation b/w energy scale factors

- ES factor calculated using self-radiation spectrum needs corrections
 - Bias correction: Larger comparing to ES factors calculated by fitting γ peak from ⁸⁸Y (0.898 MeV)
 - Temperature correction: Linear correlation b/w energy scale and temperature
- Energy is reconstructed by

$$ES = (ES_{\text{self}} + f_{\text{temp}} \times \delta T)/f_{\text{bias}}$$
$$E = charge \times ES$$

 The correction parameters were decided by measurements:

$$f_{\rm bias} = 1.122$$

$$f_{\text{temp}} = 0.114$$

Analysis Result

Reconstructed Energy

- A clear RMD peak can be seen in the time difference b/w RDC and LXe
- There are RMD and Michel energy peaks like MC
- Energy cut reduces background to 1/10, but the RMD events to 3/4
 - → Energy can be used for RMD identification

Comparison with MC

Reconstructed E_{γ}

- Mixed events of three types for MC
 - RMD events from μ decay on the target
 - AIF events from μ decay on the target
 - μ decay in flight
- Reconstructed E_y spectrum is almost consistent, but the number of events of data exceeds that of MC in high energy region due to pile-up events

Comparison with MC

 $T_{RDC} - T_{LXe}$ (data)

(the number of events detected by RDC) / (the number of all events)

Energy detected by LXe

data

$$N_{RMD\ detected} = 5684 \pm 154 \text{ events}$$

1000 | This is a second of the second of th

MC expectation

 $= 5552 \pm 267$ events

The number of RMD events was consistent, but there is excess of data in the high energy region \leftarrow E_{ν} spectrum is not perfect in the region due to pile-up

Summary

- Commissioning run for RDC with LXe was performed.
- Took data w/ low intensity (8 \times 10 $^6~\mu^+$ stops/s) because of beam contamination
 - separator is going to be exchanged
- RMD events can be seen clearly in the plot of RDC and LXe time difference.
- RMD detection efficiency was almost consistent with MC except for pile-up events.
- Performance with higher beam rate will be checked in 2019.