Development and application of track reconstruction method with MEG II positron timing counter

宇佐見正志、他 MEG II コラボレーション
山形大学、2019年9月17日
Index

• Introduction
 • MEG II Experiment
 • $\mu \rightarrow e\gamma$ Decay
 • Positron Spectrometer
• Positron Track Reconstruction
• Application to pTC analysis
• Summary
MEG II Experiment

- The most sensitive $\mu \to e\gamma$ search with the most intense muon beam
- Upgraded experiment from MEG: Positron spectrometer is newly constructed to achieve $\times \sim 2$ better detector resolution and reconstruction efficiency under $\times \sim 2$ higher beam intensity ($7 \times 10^7 \mu^+/s$)
μ → eγ Decay

- **μ → eγ**: charged Lepton Flavor Violation (cLFV)
 - Prohibited in the standard model
 - Predicted in the beyond standard model within experimental reach
 - To discover μ → eγ means to discover the new physics!!

- Signal kinematics of **e and γ**:
 - Timing, position, and momentum is the key
 - High reconstruction efficiency under the intense μ beam is needed

\[\begin{align*}
\gamma & \quad \mu \\
52.8 \text{ MeV} & \quad \text{52.8 MeV} \\
\text{180° (back to back) at the same timing from the same position} &
\end{align*} \]
• Positron Spectrometer:
 • Pixelated timing counter (pTC): measure a positron crossing timing
 • Cylindrical drift chamber (CDCH): detect a positron track as continuous hits
 • Gradient magnetic field: bend the flight path of positron

• Commissioning with full positron detectors, but partial readout in 2019.
Pixelated Timing Counter (pTC)

- Positron timing is determined by pixelated Timing Counter (pTC)
 - 512 scintillation counter with 6 series connected SiPMs
 - 1 positron crosses multiple counters
 - pTC achieves ~ 35 ps with 8 hits (average # of hits)

\(\sigma(t) \sim 80 \text{ ps at each single counter} \)
Cylindrical Drift Chamber (CDCH)

- Ultra-low mass (90% helium based gas mixture + 10% isobutene) cylindrical drift chamber with stereo wires
- 192 drift cell (~7mm × 7mm) per layer (9 layers)
 - 1.7—0.8 MHz/cell
 - \(<\text{Nhit}> \approx 650 \) in event in 250 ns
- Tracking done based on Kalman Filter technique (with GENFIT)
 - Track seeds are made with outer layer hits

Image Caption:
Yellow and purple shows different stereo signal event.
MEG II Positron Analysis Status

<table>
<thead>
<tr>
<th>Positron Resolution</th>
<th>MEG</th>
<th>Design (10 layer)</th>
<th>Updated (9 layer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta (mrad)</td>
<td>9.4</td>
<td>5.3</td>
<td>5.9</td>
</tr>
<tr>
<td>Phi (mrad)</td>
<td>8.7</td>
<td>3.7</td>
<td>5.3 ※A</td>
</tr>
<tr>
<td>Momentum (keV)</td>
<td>380</td>
<td>130</td>
<td>83</td>
</tr>
<tr>
<td>Vertex Z (mm)</td>
<td>2.4</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Vertex Y (mm)</td>
<td>1.2</td>
<td>0.7</td>
<td>0.72</td>
</tr>
<tr>
<td>Positron time (ps)</td>
<td>108</td>
<td>46</td>
<td>49 ※B</td>
</tr>
</tbody>
</table>

※A. Correction based on theta and phi correlation is not applied, though expected value include it.
※B. 1 year radiation damage effect is roughly simulated, w/o cooling condition. \(\sigma_r^{(\text{true})} \sim 10 \text{ ps} \), \(\sigma_{r_{\text{z,0ps}}} \sim 25 \text{ ps} \) is added.

- **Signal only case**
 - Efficiency: \(80 \pm 1 \% \)
 - 9 layer configuration

- **Signal + BG**
 - Efficiency: \(60 \pm 1 \% \)
 - 9 layer configuration

• **MC**: We have not yet achieved the target efficiency (70%)
 - Current algorithm is not enough to achieve the target sensitivity
 - Tracking quality is not enough -> becomes inefficiency events (tail)

• **Data**: We do not have enough data to estimate the track quality
 - Limited readout is now available, CDCH tracking is difficult this year

• Analysis breakthrough is now needed to take a step !!!
pTC Self-Tracking

• We have developed new tracking idea: pTC self-tracking
 • Track reconstruction with pTC hits, without CDCH information

• With this algorithm,
 • Improve the positron reconstruction quality and efficiency
 • pTC track gives CDCH for the initial position, momentum, time etc ...
 • Those additional information will help to improve tracking (LR ambiguity, 1st turn & 2nd turn combine, z determination etc ...)

• Detector response study with the commissioning data in 2019
 • We want to reconstruct "track" even with the strictly limited readout
 • This partial track can pick up CDCH hits and combine those as track
Index

• Introduction
• Positron Track Reconstruction with pTC
• Application to pTC analysis
• Summary
Positron Tracking in pTC

- **Track reconstruction:** estimate the positron's momentum, path-length, and position etc from detector's hits

- We have to estimate the momentum and y-position information to make a good track
 - Initial momentum is around the signal value: $\sim 45 \pm 8$ MeV
 - This is determined by our gradient magnetic field's characteristics

- $\sigma (z) \sim 0.25$ cm
- $\sigma (x) \sim 1.1$ cm
- $\sigma (y) \sim ???$

- x from arrival time difference ($\sigma \sim 1.1$ cm)
- z from counter position ($\sigma \sim 0.25$ cm)
- \times y information
- \times momentum information
Parameter Estimation

- y-position from the segmented design of pTC
 - We list up all possible patterns of cluster hits pattern
 - 8 mm resolution on y direction

![Diagram of counter under test](chart)

- Forward counters
- Backward counters

hit pattern: 0000110000

V_hit vs. Nth hit

Entries: 9288
Mean x: 4.866
Mean y: 0.05581
Std Dev x: 3.201
Std Dev y: 0.799

~ 8 mm resolution at each # of hits

No bias for mean value
Track Reconstruction

• Track reconstruction with Kalman Filter technique
 • We use GENFIT package for calculation
 • Outlier can be rejected by using DAF option (extension of kalman filter)

Kalman Filter
Efficient recursive algorithm to estimate the state vector and its covariance matrix based on previous states.

GENFIT
A generic toolkit for track reconstruction for experiments in particle and nuclear physics.

About GENFIT: http://genfit.sourceforge.net/Main.html
Track Reconstruction (MC)

Blue plane: Detector plane
Blue projection: Forward propagation
Purple projection: Backward propagation
Red projection: Smoothed track

Red: estimated R
Blue: Truth track

Expected Performance (MC)
Efficiency: 90%
R position resolution on each counter: ~5mm
Momentum resolution: 5 MeV
Angle resolution: 100 mrad
TOF b/w adjacent counters: 5 ps
pTC-CDCH Combined Tracking (MC)

- pTC self track gives CDCH for the initial position, momentum, time etc...
 - Current CDCH seeding starts from 2 x 2 hits in 2 layer
 - Especially direction information (momentum) is the key for improvement
- Improve the positron tracking quality by combining two detectors

Work in Progress
pTC-CDCH Combined Tracking (MC)
Intermediate Summary

We established pTC-self tacking algorithm

• This algorithm can give additional information for CDCH tracking
 • Initial momentum (direction), position, timing etc...
 • Momentum (direction), z information is the key to improvement
• CDCH detector study in 2019 commissioning with limited channel

• Application:
 • Track based calibration / performance study in the pTC
 • Resolution improvement study / Outlier rejection with DAF
 • CDCH detector response study in 2019 commissioning with limited channel
Index

• Introduction
• Positron Track Reconstruction
• Application to pTC analysis
• Summary
Application for pTC analysis
Application for pTC analysis

Check the all geometrically same combinations

(Notice that counters are used twice or more.)

• Until 2017, we used fixed counter combination to evaluate the pTC’s timing resolution
• With this track, we can use any combination with TOF correction

With any combination

Even-Odd Analysis: $\frac{1}{N} \left(\sum_{i=1}^{N} (T_{2i} - TOF_{2i}) - \sum_{i=1}^{N} (T_{2i+1} - TOF_{2i+1}) \right)$
Application for pTC analysis

Full System of Positron Timing Counter Having Time Resolution under 40 psec with Fast Plastic Scintillator Readout by SiPMs

https://indico.cern.ch/event/716539/contributions/3245920/

Reported by M.Nishimura @ VCI 2019

Pilot Run

Expectation from Pretest with ^{90}Sr

2017, fixed combination

2018, any combination
Track Based Calibration

- Calibration with michel positron track by minimizing the chi2
 - Important point is TOF (path length) calculation b/w counters
 - Until 2017, we used the flight pattern classification

Calculation with Millepede II
A software provided by DESY to solve the linear squares problems, such as detector alignment and calibration based on track fits. (www.desy.de/~kleinwrt/MP)
Track Based Calibration (MC)

σ~19.6 ps with 3 tof patterns

σ~13.5 ps with self track
Outlier Rejection

- Sometimes outlier hits in a cluster make a tail event (timing tail or position tail in tracking) and may cause inefficiency
- DAF computes the "weight" in each detector layer, and rejects the outliers
 - Based on "position" (calculated by GENFIT) and "timing" (Added manually)
 - Slight improvement with 2018 commissioning data (36.7 ps -> 36.1 ps on average)

The signal positron does not pass through this counter, but a "hit" is reconstructed (secondary particle entered) -> Strange hits are rejected by the position DAF weight (threshold: 0.5)
Summary

• Positron reconstruction algorithm for MEG II experiment has been developed. And new idea with pTC self-tracking is implemented
 • High efficiency (90%), relatively good resolution on position (~5 mm), and momentum (~ 5 MeV)

• Combined algorithm with pTC self-track reconstruction and CDCH track reconstruction started to be developed
 • To achieve the target efficiency (70%) and target resolution of positron reconstruction
 • Application to 2019 commissioning to try the CDCH detector response study (e.g. hit reconstruction efficiency, z resolution)
Back up
MEG II Positron Analysis Framework

- What we want: **positron timing, momentum, position**
- Analysis framework with pTC and CDCH has been developed

pTC
- Waveform Analysis Hit rec.
- pTC counter clustering
- pTC inside tracking
- initial timing

CDCH
- Waveform Analysis Hit rec.
- CDCH track finding
- CDCH track fitting (extrapolation)
- initial momentum, position reconstruction

TOF correction
- Timing reconstruction
- Extrapolation
- initial momentum
- initial position from CDCH was needed
Outlier Rejection

- DAF computes the "weight" in each detector layer, and rejects the outliers
 - Based on "position" (calculated by GENFIT) and "timing" (Added manually)

This counter has very large waveform (~900mV) compared to normal counters (~200-400mV)
-> Strange reconstruction, rejected in pTC tracking
pTC Tracking with CDCH

- Eff.: 97%
- Resolution
Grouping of r-estimation

※old grouping
TOFの確認

- TOFの精度は全部合わせてstv ≈ 17.6 ps
 - Independent Trackingとさほど変わらない(若干悪い？)
 - gaussianの幅は明らかに細い一方で、外れ値が増加している。
 - 若干ではあるが、Rを小さく見積もりがちな傾向。

Independent

with CDCH
TOF の確認

Quality cut

Mom + Quality cut
60%の統計減少
Event Selection

SPX Tracking

Independent Tracking

40 MeV<mom<55 MeV
明らかにtail eventの減少

40 MeV<mom<55 MeV
Propagation to cyl

10%程度の統計減少
改善は小さい