Core-to-Core Program

MEG II experiment: Commissioning of Liquid Xenon Detector towards Start of Physics Run (1) MEG II 実験:液体キセノン検出器の物理ラン開始に向けた コミッショニング(1)

Kazuki Toyoda on behalf of the MEG II Collaboration

19-Sep-2019

JPS autumn @Yamagata Univ.

Commissioning of Liquid Xenon Detector (1)

Outline

- ➢ Introduction
 - $\circ \mu \rightarrow e\gamma$
 - o MEG II
 - Liquid Xenon Detector
 - \circ pre-Engineering Run
- Photo-Sensor Monitoring • MPPC
 - o PMT
 - Energy Scale
 - Prospect

3/15

19-Sep-2019

$\mu ightarrow e\gamma$

Charged Lepton Flavor Violation o practically **forbidden** in Standard Model by tiny neutrino mass • but many predictions by **new physics** are **within experimental reach** • eg. SUSY with GUT/Seesaw example of $\mu \rightarrow e \gamma$ decay \tilde{e} е $\tilde{\chi}^0$ $\blacktriangleright \mu \rightarrow e\gamma$ search o Signal • Dominant Background: Accidental both 52.8 MeV/cе . back to back same timing μ + from $\mu \rightarrow e\nu\nu\gamma$ $ee \rightarrow \gamma \gamma$ Kazuki Toyoda JPS autumn 2019

MEG II

○ goal sensitivity: 6.0×10⁻¹⁴ in 60 weeks compared to MEG I result:

 $Br(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ (sensitivity: 5.3×10^{-13})

• key concept:

- high μ intensity: $7 \times 10^7 \mu/s$ @PSI
- high resolution detectors

\circ talks

- overall status: 19pT22-2
- timing counter: 17pT12-1,2,3
- radiative decay counter: 18pT12-1

Liquid Xenon Detector

○ 900 L liquid Xe scintillator (VUV-light ~175 nm)

 \circ PMTs on γ incident surface are replaced to MPPCs

12 mm×12 mm MPPC ×4092

 \rightarrow improved uniformity and granularity

- energy resolution : 2% @MEG I \rightarrow 1% @MEG II (expected)
- position resolution: 5 mm @MEG I \rightarrow 2.5 mm @MEG II (expected)

2 inch PMT $\times 668$

MC event display example of pile up

JPS autumn 2019

Commissioning of Xe Detector

- pre-Engineering Run 2018
 - sensor calibration by LED, ²⁴¹Am α source
 - 17.6 MeV γ from *p*-Li reaction
 - background γ from μ beam ($\mu \rightarrow e\nu\nu\gamma$, $ee \rightarrow \gamma\gamma$)
 - limited to 1/4 of full readout electronics

o talks

- MPPC PDE issue: 17aT12-4,5
- energy resolution:
 - sensor monitoring: 19pT14-6 (this talk)
 - background spectrum: 19pT14-7
 - p-Li reaction: 19pT14-8

Commissioning of Liquid Xenon Detector (1)

Outline

- Introduction
 - $\circ \mu \rightarrow e\gamma$
 - MEG II
 - Liquid Xenon Detector
 - o pre-Engineering Run
- Monitoring of Photo-Sensor
 - o MPPC
 - o PMT
 - Energy Scale
 - Prospect

Kazuki Toyoda

JPS autumn 2019

Photo-Sensor Monitoring

MPPC

$\succ charge = N_{photon} \cdot PDE_{\lambda} \cdot gain \cdot ECF$ $\circ \text{ weak LED}$

PDE : Photon Detection Efficiency (depend on wavelength) gain : charge from 1 pixel ECF : Excess Charge Factor (= crosstalk + afterpulsing)

Charge follows "Poisson + correlated noise" distribution $gain \cdot ECF = \frac{1}{(1 + 1)^{1/2}} + \frac{1}{(1 + 1)^{1$

LED

 μ (expected # of primary discharge)

estimated from pedestal fraction: $P(0 \ pe) = e^{-\mu}$

o Strong LED: response for visible light
o charge from scintillation by *α* from ²⁴¹Am
o current from scintillation by *γ* from *μ*

PMT

$\succ charge = N_{photon} \cdot QE \cdot CE \cdot gain$ $\circ \text{ LED of different intensity}$

QE : Quantum Efficiency CE : Collection Efficiency gain : charge from 1 photoelectron

depend on B-field

9/15

Charge follows Poisson distribution $gain = \frac{variance}{mean}$

O Strong LED: response for visible light
 O charge from scintillation by α from ²⁴¹Am
 O current cannot be read out

LED

MPPC: Visible Light

MPPC: VUV Light

current from γ (from μ) charge from α

- \circ current behavior is not simple
- indicates ~10% decrease of PDE for VUV in ~150 h @MEG II intensity
- response for VUV light is decreasing much faster than for visible light

date / month

PMT

no B-field B-field config. 1 B-field config. 2 during µ beam

- gain & CE depends on B-field configuration
- \circ all behavior is consistent within ~ 1%
- \circ gain decrease ~ 7%

Validation by y from p-Li Reaction

- \geq 0.4-1 MeV *p* by Cockcroft-Walton accelerator
- > Li₂B₄O₇ target
- > 17.6 MeV γ from ⁷Li(*p*, γ)⁸Be
- ➢ first time in MEG II
 → detail in following talk

➤ 3 runs

- $\circ 30^{\text{th}} \text{ Nov}$
- $\circ 10^{th} \, Dec$
- $\circ 17^{\text{th}} \text{Dec}$

Validation by y from p-Li Reaction

➢ 3 runs (30 Nov, 10 Dec, 17 Dec)

Summary & Prospect

> MPPC

o PDE for VUV light looks decreasing

- under investigation (17aT12-4,5)
- $\circ\,$ cannot follow the change by frequent LED calibration

≻ PMT

 \circ gain seems decreasing although it can be recovered by increasing HV \circ but faster than expected → lab. test is going on

Engineering Run 2019

- \circ more stable long-term beam irradiation
- \circ frequent α calibration (thanks to improve of DAQ speed)
- \circ frequent *p*-Li runs to firmly confirm monitoring precision

JPS autumn 2019

Physics Background

19-Sep-2019

About XEC

Figure 59 An MPPC signal waveform (upper) and a PMT signal waveform (lower) for the same α -event digitised at a sampling frequency of 700 MSPS.

Figure 62 (Top) Response functions for the SiPMs with different total pixel numbers measured for a 40 ps laser pulses [135]. (Bottom) The number of photoelectrons expected from a $12 \times 12 \text{ mm}^2$ MPPC versus conversion depth in the MEG II MC simulation.

XEC Performance (1)

Figure 71 Position resolution in the horizontal (top) and vertical (bottom) directions as a function of the first conversion depth. The resolutions in MEG are shown with red markers, and those in MEG II are shown with blue markers.

Figure 73 Energy PDFs for E_{γ} = 52.83 MeV photons converting in the MEG (left) and the MEG II (right) LXe photon detectors. The response to shallow (top) and deep (bottom) events are shown separately.

XEC Performance (2)

Figure 74 Energy response functions with various assumptions of additional fluctuation (0, 0,7 and 1,3%) and that of the 2009 data.

Figure 75 Reconstructed energy spectrum obtained for different beam intensities. The horizontal axis shows energies in GeV without unfolding pile-up photons (a) and the same after unfolding and subtracting the energy of pile-up photons (b). Green, black, blue and red lines show the spectrum at muon stopping rates of 1.0, 3.0, 3.3 and $8 \times 10^7 \mu^+/s$, respectively. The spectra are normalised by the number of events in the range 48–58 MeV; the scaling factors are consistent with the muon stopping rate on the target. A difference in the low energy part below 45 MeV is due to different effective trigger thresholds; a difference in the high energy part is due to the different ratio between the photons backgrounds and the cosmic ray background.

21/15

Requirement for Sensor Calibration

図 5.11 MPPC の PDE の測定誤差と位置・エネルギー分解能の関係 [37]。(左)MPPC の PDE の測定誤差の 増加に伴って位置分解能が悪化する。(右)MPPC,PMT の PDE の測定誤差の増加によってエネルギー分解能 が悪化する。

Estimation of Radiation

推定radiation	推定量	根拠
γ	1 x 10 ⁻² Gy	シミュレーション
neutron	2.7x10 ⁶ n/cm ²	実験ホールにおける過去の測定
photon (Xe scintillation)	~10 ¹⁵ photon (10 ¹³⁻¹⁴ p.e.)	シミュレーション : 1e6 p.e. /s 電流の実測値: 1e7 p.e. /s ビーム期間: 150時間

PMT History

Individual Difference

- Individual difference of measured PDE:
 - MPPC: 1.0%(636 channels)
 - PMT: 5.2%(364 channels)

 $\sigma_{obs} \sim \sqrt{\sigma_{true}^2 + \sigma_{resolution}^2}$

CW

Kazuki Toyoda

JPS autumn 2019

JPS autumn 2019

Position Dependence of Decrease Rate @ MEG II

Kazuki Toyoda

JPS autumn 2019

Backup

HV Estimation based on Different Models

$$\succ$$
 Gain = $a(V - V_0)^k$

