

Core-to-Core Program

MEG II 実験:液体キセノン検出器の 物理ラン開始に向けたコミッショニング(2)

MEG II experiment: Commissioning of Liquid Xenon Detector towards Start of Physics Run (2)

> 小川真治、 他MEG IIコラボレーション @日本物理学会 2019年秋季大会

2019.09.19

LXe detector in MEG II

- LXe γ-ray detector has been upgraded for MEG II to significantly improve the performance.
 - measure energy, hit position, and timing of 52.8MeV γ from $\mu \rightarrow e\gamma$.

216 2-inch PMTs 4092 $12 \times 12 \text{ mm}^2 \text{ MPPCs}$

- Detector commissioning on going.
- On 2018 Dec., Pre-Engineering run 2018 was conducted.
 - Monochromatic γ-source for calibration.
 - BG γ-ray from muon beam.

Energy resolution of MEG LXe detector

Ey resolution vs. Ey energy

for signal 52.8MeV	(MC)	(Data)
depth < 2cm	~2%	2.4%
depth > 2cm	1.0%	1.7%

• The reason of this degradation is not understood.

- Degradation has an energy dependence, and it is obvious in low energy.
- For MEG II, the uniformity of readout is improved. This leads to better resolution for the shallower region.
- This unsolved degradation is limiting the precision of expected energy resolution (0.7-1.5%), and that of the expected sensitivity of MEG II.
 Energy resolution (o) for signal 52.8MeV
 MEG II (MC)
 MEG II (MC)

Energy resolution (σ) for signal 52.8MeV	MEG II (MC)	MEG II (Data)
depth < 2cm	0.8%	???
depth > 2cm	0.8%	???

% w/ limited # of readout ch

Energy resolution in MEG II

- We observed worse energy resolution in 17.6MeV.
 - MC: 1.5 %, Data : 2.8%. (for depth > 2cm)
 - 17.6MeV γ -ray from ${}_{3}^{7}$ Li $(p,\gamma)_{4}^{8}$ Be.
- How to investigate the situation.
 - Try to check measured energy resolution
 @ high energy region.
 - → Access to constant term. This talk.
 - Try to understand MC/Data difference observed @ 17.6 MeV.
 - → Access to energy dependent term.
 - Next talk.

Energy resolution estimation from BG spectrum

- In MEG, energy resolution at 55MeV was measured by $p\pi^- \rightarrow n\pi^0$, $\pi^0 \rightarrow 2\gamma$.
- This was not possible due to the delayed schedule of the experiment.
- In this study, γ-ray spectrum from muon beam was used.
 - Mainly coming from radiative decay of muon stopped on target ($\mu \rightarrow e \nu \nu \gamma$).
 - Background of gamma in the physics search.
 - Data at reduce muon beam intensity is used to reduce the effect of pileup.
- Energy resolution can be estimated from the edge of the spectrum.

Fit method

- Energy spectrum of data is fitted by that of MC convoluted by gauss.
 - Minimizing chi square between reconstructed energy distribution of MC and Data.
 - Fit region : 45-54MeV.
- Fit parameter:
 - Energy scale of data. (i.e. scale of x-axis)
 - Beam rate of data. (i.e. scale of y-axis)
 - Sigma of convoluted gauss.

Energy scale

Energy reconstruction

 $E_{\nu} = Const. \times$

 $charge \times weight$

 $gain \times ECF \times PDE$

- Energy scale has to be fixed, to get resolution with reasonable uncertainty.
- In MEG, energy scale is monitored by monochromatic γ-ray from calibration source.

• We tried to estimate energy scale from the spectrum itself.

8

Fit result -energy scale-

- Minimization of chi square are performed at each energy scale.
- Best fit : at energy scale of -2.0(1) % from calibration source.
- Energy scale of reasonable uncertainty is obtained from the gradient of the spectrum.

Uncertainty of energy scale

- If there is some systematic uncertainty in the spectrum shape of background gamma, it can bias fit result of energy scale.
 - Spectrum of this region is defined by RMD decay of stopped muon on target, little uncertainty from physics.
- Still there may be some effect which is not correctly included in simulation.
- Example : trigger efficiency
 - DAQ by self trigger of γ energy
 - If trigger efficiency follows error function, efficiency > 99.7% in fit region, and no effect to the fit .
 - It there is long tail component, it may bias spectrum shape.
 - Some deviation of +1[%/MeV] may be observed.
 → Corresponds to 0.2% uncertainty to energy scale.

Fit result -energy resolution-

- Best fit of resolution at each energy scale.
- Optimal resolution largely depends on the assumed energy scale.
- σ is fitted to be 0.5-1.4 %, in the favored energy scale (-2.0(2)%).

Summary

- Energy resolution for 52.8 MeV signal γ-ray is one important parameter for MEG II experiment.
- Worse resolution than simulation is observed both in MEG and at 17.6 MeV in MEG II.
- We are trying to understand the reason of this.
- We tried to estimate energy resolution at 52.8MeV from the edge of the BG gamma spectrum.
 - Resolution is fitted to be 0.9-1.6%.
 - This is not fully reliable due to the hidden systematics of the energy scale of data.

- In 2019 Oct-Dec, Pre-Engineering run 2019 is planned.
 - Stable and frequent DAQ of calibration data in MEG II beam environment.
 - Mainly to study in-beam degradation of sensor performance.
 - This will enable us to understand and track energy scale fluctuation.
 - DAQ of monochromatic 55MeV γ -ray from $p\pi^- \rightarrow n\pi^0$, $\pi^0 \rightarrow 2\gamma$.
 - Direct measurement of energy resolution at 55MeV.
 - Energy scale measurement at 55MeV.

BACKUP

MEG II experiment

Upgrade of MEG experiment

- □ Searches for $\mu \rightarrow e\gamma$.
- Dominant BG : accidental BG
- More statistics
 - x2.3 muon beam rate
 - x2 positron efficiency

Better separation of signal event from BG

- x2 for all detector resolutions
- New detector for background tagging will be introduced

Expected sensitivity: 6×10^{-14}

One order of magnitude better than MEG

Engineering run from 2020

Followed by physics data taking.

Reference : "The design of the MEG II experiment", Eur. Phys. J. C (2018) 78:38

Energy resolution in MEG II

- Study of energy resolution with 2018 data is ongoing.
- Use WaveDREAM (electronics for MEG II) for waveform readout.
 - Read out 25% of detector.

- Energy is reconstructed based on sum of detected # of photon.
 - $E_{\gamma} = Const. \times \sum_{sensor} \frac{charge \times weight}{gain \times ECF \times PDE}$
 - Elimination of pileup gamma is applied.
 - ref: JPS, 2018年秋季大会, 16aS41-8

15

Pre-engineering run 2018

- Pilot run of LXe detector was carried out with MEG II muon beam.
- Similar beam time was also performed in 2017.
 - \rightarrow Several improvements in 2018.

Monochromatic γ
 from calibration source.

• Not available in 2017.

- 2. Unbiased TRG thanks to better sensor calibration.
- In 2017, trigger by sum of MPPC waveform
- In 2018, trigger by sum of MPPC + PMT waveform

Detector performance study. Detector response calibration.

Beam background γ spectrum study with calibrated detector.

Sec. 3

Energy scale stability

- Photo sensor response changes.
 - PMT gain shift by Magnetic field, beam charge-up.
 - PMT gain aging by beam.
- \rightarrow Needs to be monitored.

Monitor by 2 independent methods (LED & CW-Li peak).
 → Gain shift by ~10% observed. Still ~2% inconsistency left.

γ-ray DAQ with muon beam

- γ-ray DAQ with muon beam.
 - (i.e. background γ spectrum in $\mu \rightarrow e\gamma$ search)
 - $-\gamma$ -ray from radiative muon decay + converted γ from Michel muon decay.
- DAQ performed at 2 types of beam rate.
 - − MEG II intensity rate (7 × $10^7 \mu/s$) → To check pileup effect.
 - − Reduced beam rate (8 × 10⁶ μ /s) → To check detector response w/o pileup.
- Pileup identification and unfold is applied in offline analysis.

Eγ spectrum (@ reduced muon beam rate)

19

- Energy spectrum is well consistent up to ~51 MeV.
- Inconsistency observed in high energy region.
 - maybe due to BG events not coming from muon beam.

Eγ spectrum (@ MEG II nominal muon beam)²⁰

- Energy spectrum has similar shape, but not consistent with MC.
 - Large number of events in high energy region.
 This is due to larger number of pileup γ than expected.
 - Some inconsistency also in low energy region.
- Pileup subtraction in offline analysis works.

Expected performance

• Significant improvement of all resolutions and efficiency are expected.

Detector performance for signal γ-ray

	MEG (measured)	MEG II (simulated)
Position	~5 mm	~2.5 mm
Energy	~2%	0.7 - 1.5%
Timing	62 ps	40 - 70 ps
Efficiency	65%	70%

