μ⁺ → e⁺γ 探索実験 MEG II
2018年度の展望

Y. Uchiyama (The University of Tokyo) for the MEG II collaboration

日本物理学会第73回年次大会 (22 Mar, 2018)
Physics of $\mu^+ \rightarrow e^+\gamma$

- Charged Lepton Flavor Violation
 - Never observed yet. Practically forbidden in SM by tiny neutrino masses
- But, we know ‘flavors’ are violated in SM

- Why not in physics beyond SM?
 1. Generally no reason to be conserved.
 2. Even with some symmetry, contribution from the known FV is unavoidable via radiative corrections in the new physics.

- Why charged lepton?
 1. No SM contribution, no theoretical uncertainty.
 2. Probably, connected to the mystery of neutrino.

- Many theoretical predictions are within experimental reach
MEG experiment

- μ^+: World’s most intense DC muon beam @ PSI
- γ: Detect with liquid xenon scintillation detector
- e^+: Detect with gradient B-field spectrometer (drift chamber & timing counter inside)

Search 1.7×10^{13} muon decays for $\mu^+ \rightarrow e^+\gamma$

No excess was found and new upper limit was set:

$$B(\mu^+ \rightarrow e^+\gamma) < 4.2 \times 10^{-13}$$

(90% C.L.)

(while 5.3×10^{-13} expected)

$\times 30$

improvement from the prev. experiment

March 22, 2018

YUSUKE UCHIYAMA
MEG II: \(\times 10 \) improvement

Search for \(\mu^+ \to e^+\gamma \) down to \(6 \times 10^{-14} \) (90% C.L. sensitivity)

- \(3 \) years run
- \(B(\mu^+ \to e^+\gamma) < 4.2 \times 10^{-13} \) (90% C.L.)
 - (while \(5.3 \times 10^{-13} \) expected)

- \(\times 2 \) intensity muon beam
- \(\times 2 \) resolution everywhere
- \(\times 2 \) efficiency

MEG Upgrade Proposal

MEG II design

New

- higher beam rate
- larger acceptance
- better resolutions
- moderate cost

Search for \(\mu^+ \to e^+\gamma \) down to
\[6 \times 10^{-14} \]
(90% C.L. sensitivity)

3 years run
Liquid xenon photon detector (LXe)

Pixelated timing counter (pTC)

Cylindrical drift chamber (CDCH)

Radiative decay counter (RDC)

Muon stopping target

Electronics & DAQ
Current status

- All the detectors except for CDCH are constructed.
- Pilot run with partial electronics was successfully carried out in Nov.–Dec.
Current status

- All the detectors except for CDCH are constructed.
- Pilot run with partial electronics was successfully carried out in Nov.–Dec.
- Struggle with the wire braking issue on CDCH.
- Struggle with the noise issue on the readout electronics.

⇒ >2 years delay from the original (2013) schedule.

- This year all the detectors will get ready.
- Full electronics will be ready toward the end of the year.

⇒ Carry out full engineering run, but not physics run this year.
Concentrate on issues and new things.
This talk is negatively biased.
Detectors in good shape/good progress last year
Skip in this talk. See dedicated talk in this/prev. meetings.
Cylindrical drift chamber

MEG I DCH
- ultra low-mass chamber (He:C₂H₆ 2 × 10⁻³ X₀)
- 16 modules
- 288 drift cells

MEG II CDCH
- ultra low-mass chamber (He:iC₄H₁₀ 1.6 × 10⁻³ X₀)
- 2-m long, single volume
- stereo angle
- 1280 active drift cells
- 13056 wires

1. Wire break problem
2. How to go this year
3. Future
Wire break

- We have reported the wire breaking issue several times

 - discovered Al wire is delicate to humidity. Took action in environmental control.
 - half-year stop, restarted wiring from scratch

 - probably human effect. Took action to review procedure, acceptance test.
 - 3 months stop

- **2017 Jul. Third problem**: Discover several wires had been broken after assembly.
 - 4 months stop to investigate/understand the problem and to take further measures.
Fundamental information

- Total 13,056 (sense wire 1,920) wires
- Ag plated Al field wire, 40 or 50 μm
- Nominal stretch +4 mm (40% of elastic limit)
- Acceptance test: 10 × +5mm stretch

The 3rd problem summary:

| 6 wires broken | out of 4540 | +4 mm | in 10 months |
| 8 wires broken | out of ~150 | +5 mm | in a week |

- All Al wires, no W wire.
- Evidence of acceleration by tension.

Aluminum 5056 alloy

Detailed investigation...
Corrosion (腐食)

環境
• 水分
• 被膜破壊性

電気化学

腐食

局部腐食

応力腐食割れ

異種金属接触腐食

腐食進行が引張力によって指数関数的に加速

破壊

\[
\text{Al(OH)}_3 + \text{Cl}^- \rightarrow \text{Al(OH)}_2\text{Cl} + \text{OH}^- \\
\text{Al} + 3\text{Cl}^- \rightarrow \text{AlCl}_3 + 3\text{e}^- \\
\text{AlCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{Al(OH)}_3 + 3\text{H}^+ + 3\text{Cl}^-
\]

Al

(陽極)

\(i_C\)

Ag

(陰極)

\(i_A\)

木村「腐食概論」溶接科学誌79(2010)

“Stress Corrosion Cracking of Aluminum Alloys”
Metallurgical Trans. A 6a(1975)631

“Reliability study of wire bonds to silver plated surface”
IEEE Trans. Parts Hybrids Packaging PHP-13(1977)419
Corrosion（腐食）

電気化学
- 水分
- 被膜破壊性 アニオン (Cl⁻)

環境

腐食

応力腐食 割れ

局部腐食

異種金属 接触腐食

腐食進行 が 引張力によって 指数関数的に加速

Al₂O₃ & Al(OH)₃

上質なコーティング or コーティングなし

湿度を下げる、 チェンバーを封じる

破壊

“Reliability study of wire bonds to silver plated surface” IEEE Trans. Parts Hybrids Packaging PHP-13(1977)419

引張力を下げる

腐食に弱いアルミワイヤーにこだわる？？
Low-mass drift chambers

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>Cell size</th>
<th>Sense wire</th>
<th>Field wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEO II</td>
<td>Ar:C₂H₆ 50:50</td>
<td>14 mm</td>
<td>20-µm Au-W</td>
<td>110-µm Au-Al, 110-µm Cu/Be</td>
</tr>
<tr>
<td>BESIII</td>
<td>He:C₃H₈ 60:40</td>
<td>12–16.2 mm</td>
<td>25-µm Au-W</td>
<td>110-µm Au-Al Crimp</td>
</tr>
<tr>
<td>Belle II</td>
<td>He:C₂H₆ 50:50</td>
<td>6–18 mm</td>
<td>30-µm Au-W</td>
<td>126-µm Al Crimp</td>
</tr>
<tr>
<td>COMET-Phase I</td>
<td>He:iC₄H₁₀ 90:10</td>
<td>16–16.8 mm</td>
<td>25-µm Au-W</td>
<td>126-µm Al Crimp</td>
</tr>
<tr>
<td>KLOE</td>
<td>He:iC₄H₁₀ 90:10</td>
<td>20–30 mm</td>
<td>25-µm Au-W</td>
<td>81-µm Ag-Al Crimp</td>
</tr>
<tr>
<td>MEG II</td>
<td>He:iC₄H₁₀ 85:15</td>
<td>6.6–9 mm</td>
<td>20-µm Au-W</td>
<td>40-µm Ag-Al Solder</td>
</tr>
</tbody>
</table>

- **KLOE** used same type of wire without any problem for **>10 years**
 Constructed under 50% R.H., never observed salt formation

Other material than Al is **not acceptable** from the resolution point of view.

- **Bare Al wire** could be a better alternative, but difficulty in soldering.
 (Naturally coated by Al₂O₃)
How to go this year

1. More strict humidity control: <20% locally
2. Reduce elongation to +3 or +3.5 mm
 - Since Aug, **no break** has happened.
 - Resumed assembly (27th Sep) to complete the chamber, but
 - reduce # of layers: 10 \(\rightarrow\) 9 layers
 - Reduced efficiency by 10%

- **Use & operate it this year**
 - Now closing chamber (humidity \(\rightarrow\) 0%)
 - Bring it to PSI in May by truck
 - then install in Jul
 - Commissioning \(\rightarrow\) engineering run

- Only the way to go; be aware of hidden/unexpected further problems
Wiring finally finished

Carbon fiber outer frame

Inner foil (Mylar)

Endcap part (sealed)
Future

- Form an **external committee by experts** to review
 - Called by PSI scientific committee in this spring
- the issues — whether we understand it

- and to discuss construction of **2nd CDCH**
 - With full layers
 - Better wire (if any), better treatment

- Take **1.5 years** to build
- Necessary budget is secured by INFN (Italy)
- Problem is the **human resource**
 - Construction in Italy in parallel with
 - Commissioning/operation/analysis of the 1st one
Readout electronics

- New DAQ/Trigger system
 - Use it for all MEG-II detectors in common
 - Dense & compact system to cope with increased # of channels.
 - Custom multi-functional readout board: **WaveDREAM**
 - Analog FE (programmable shaper & amplifier),
 - SiPM bias-voltage supply, waveform sampling (DRS4),
 - digitization, discriminator, FPGA-based trigger in one module
 - No pre-amplifier at detector side
 - Synchronization accuracy < 20 ps (over different crate modules)
Readout electronics

- New DAQ/Trigger system
- Use it for all MEG-II detectors in common
- Dense & compact system to cope with increased # of channels.
- Custom multi-functional readout board: WaveDREAM
 - Analog FE (programmable shaper & amplifier)
 - SiPM bias-voltage supply, waveform sampling (DRS4)
 - Digitization, discriminator, FPGA-based trigger
- No pre-amplifier at detector side
- Synchronization accuracy < 20 ps (over different crate modules)

- 2-stage amplifier
- Digitization
- Trigger
- Pole-zero cancellation
- Sync.
- HV supply

- SiPM signal waveform digitized at 2.0 GSPS
Noise issue

- **Observed large coherent noise**
 - Problem especially on LXe energy measurement
 - *Noise contribution larger than the target resolution.*
 - Factor 2–4 reduction necessary.
 - Drawback of granular readout of total-absorption calorimeter
 - ~5000 channels have to be summed.
 - → coherent noise more problematic

- **Efforts underway in hardware & software**
 - To solve before mass production for LXe.

Diagram:
- Detector
- Coaxial cables
- Feedthrough
- Sensors
- Ground
- Electronics
- Power
- Clock
- Offline subtraction of noise from system clock

March 22, 2018
YUSUKE UCHIYAMA
μ⁺ stopping target

- MEG II new target system
 - 150 μm thick scintillating sheet (BC400B)

Two CCD cameras view the target

1. Upstream
 - Take pictures of the dot pattern
 - To reconstruct target position and shape in photogrammetric way
 - The CCD camera didn’t work well in B field → search for alternative

2. Downstream
 - In-situ measurement of beam profile & intensity by detecting the scintillation light

Reduce the main systematic uncertainty in MEG

March 22, 2018
YUSUKE UCHIYAMA
Schedule (summary)

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSI beam-time start</td>
<td>Elec. for LXe ready</td>
<td>Elec. for CDC ready</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC deliver to PSI</td>
<td>CDC installation</td>
<td>Mass production of elec.</td>
<td>Beamline setup</td>
<td>Engineering run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- All detectors will be ready by summer
- LXe with full elec. from autumn
- Engineering run from Oct. to Dec.
- Physics run from 2019

MEG II design
(https://arxiv.org/abs/1801.04688)
Detensioned wires drag on teflon band

KS test with a Flat distribution: $P_{KS} = 0.01\%$
CDCH: Wires acceptance tests

- **Optical measurement** of the position of 3 reference markers on wire-PCBs
- **Alignment** and **extra-elongation** tests: +1mm wrt to the nominal wire length repeated 10 times (62.5% of the elastic range)
Humidity effect

- Test were performed in Lecce and in Pisa
 - Aluminium wires were immersed or sprayed with demineralized water and with 3% water solution of NaCl
 - In all cases wire breaking of the type observed on the chamber were induced.
- The salt near the wire edge contains Al and O: it could be aluminium oxide or aluminium hydroxide.
Past experience

- The KLOE experiment used the same type of wire
 - Core of aluminium 5056 of 80 um
 - Layer of ~0.3 um of silver

- They wired the chamber in 50% rh environment to test with HV each wire layer before starting with the following one. The wiring went on for 9 months.

- The salt formation was never observed. They were not aware of the intrinsic fragility of this type of wire.

- The chamber is still operational 10 years after the production

- The KLOE wire shows the same salt production of our wires if sprayed with water
Placement of Preamps

- No possibility to put preamps inside LXe (600W)
- No possibility to put preamps closer to detectors
- No guarantee that noise would get better

~5000 cables