MEG II実験陽電子タイミングカウンターの コミッショニング2017 -較正-

Commissioning of positron timing counter for MEG II Experiment in 2017: Calibration

Mitsutaka Nakao

(The University of Tokyo) On behalf of MEG II Collaboration

JPS Annual Meeting 2018 (25aL401-3)

MEG II Detector

At Paul Scherrer Institut in Switzerland

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO **★** Page: **2**/20

pTC: concept

Key Concept

Improve time resolution by averaging the signal time of multiple hits.

Intrinsic resolution:

70~80 ps

JPS Annual Meeting 2018 (25aL401-3) MITSUTAKA NAKAO \star Page: 3/20

Multiple scattering:

~4 ps at 9 hits

pTC: a counter

- Upstream (256 counters) + Downstream (256 counters) = 512 counters
- Fast plastic scintillator (BC422, 40 (50) x 120 x 5 mm³)
- Readout by 6 SiPMs* with series connection (in total 6144 SiPMs) at each of both sides.
- Time calibration accuracy among counters: < 30 ps

*AdvanSiD, ASD-NUV3S-P High-Gain, 3x3 mm², 50x50 µm², V_{breakdown} ~ 24 V

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO **★** Page: **4**/20

pTC: reconstruction

pTC: calibrations

Today Time Calibration

- We have to know time offset of all 512 counters with the accuracy of 30 ps.
- We have 2 complementary methods to calibrate time offset b/w counters: laser-based method and track-based method.
- Radiative Muon Decay(µ→eγvv) is used for absolute calibration for relative timing b/w e⁺ and gamma.

Today² Position Calibration

- Hit distribution within a counter is aligned to design value.
- For detail in later slides.

Energy Calibration

• Reconstructed energy (landau distribution) is aligned to MIP peak.

MITSUTAKA NAKAO 🛧 Page: 6/20

Purpose of this study

Today Time Calibration

- We have to know time offset of all 512 counters with the accuracy of 30 ps.
- We have 2 complementary methods to calibrate time offset b/w counters: laser-based method and track-based method.
- Radiative Muon Decay(µ→eγvv) is used for absolute calibration for relative timing b/w e⁺ and gamma.

What we did so far(~2016)

• We performed beam test using ¼ of pTC under the MEG II beam.

Purpose of This Study(2017)

- Operate full laser calibration system.
- Check stability of time offset.
- Consistency check b/w laser calibration and Michel calibration.

Laser-based method: concept

- Pulse laser is divided into each counter simultaneously.
- Time offset of each counter is measured relative to laser-synchronized pulse.
- Calibration uncertainty is estimated as 24 ps by testing all parts of laser calibration system.

MITSUTAKA NAKAO **★** Page: **8**/20

Time(Laser)

US/DS installation

Upstream (5th Sep., 2017)

Downstream (25th Oct., 2017)

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO ★ Page: 9/20

First full operation (Oct. 2017) Time(Laser)

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO **★** Page: **10**/20

Time(Laser) First full operation (Oct. 2017)

*different configuration of US/DS because of easier assembly work.

Time(Laser)

Time offset

 In order to know time offset to calibrate, we need to subtract "laser components" from time offset measured in laser run.

MITSUTAKA NAKAO **★** Page: **12**/20

- This includes
 - cables
 - electronics
- This does not include "laser components"

JPS Annual Meeting 2018 (25aL401-3)

Time(Track) Track-based method: concept

• Positron tracks from Michel decay ($\mu^+ \rightarrow e^+ \nu \nu$) are used for calibration.

- 1. Calculate TOF values for every counter by Monte Carlo*.
- 2. Define χ^2 as the difference b/w measured time and expected time.
- 3. Minimize χ^2 using Millepede II.
- 4. Find ΔT_{j} .
- Calibration uncertainty is estimated as 6 ps by MC study.

* This setup is for Pilot Run w/o DCH. TOF will be calculated by DCH in physics run.

Millepede II www.desy.de/~kleinwrt/MP2 A software provided by DESY to solve the linear squares problems, such as detector alignment and calibration based on track fits.

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO + Page: 13/20

Comparison b/w 2 methods

Relative time offset: time offset difference from first counter of each side.
> position#32 (DS) and position#288 (US) is set to 0 ps.

Electronics

Time

Comparison b/w 2 methods

Relative time offset: time offset difference from first counter of each side.
position#32 (DS) and position#288 (US) is set to 0 ps.

JPS Annual Meeting 2018 (25aL401-3)

Time

MITSUTAKA NAKAO **★** Page: **15**/20

Time

Discussion

- Systematic difference of TOF used as a reference b/w data and MC causes position dependent bias, but can be corrected (see bottom left).
- 2 methods are consistent within ~ 50ps (="Laser" \oplus "Track")
- 2 methods are complimentary and they should be integrated.

	Laser	Track
Position dependence	no	yes
DAQ time	short;~30min	long;~2 days
Beam	not necessary	necessary
Coverage	84%	100%
Uncertainty	24 ps	6 ps (MC)

Our strategy: time offset calculated from "Track" is mainly used, and its time-dependence is monitored by "Laser" (established).
→effectively, accuracy of ⁵⁰/_{√2} ~ 35 ps* is expected.
→good, but still have room for improvements.

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO **★** Page: **16**/20

used in physics analysis.

Position

Position calibration

• Hit position: $l_{hit} = v_{eff} \frac{t_1 - t_2}{2}$ > v_{eff} : effective velocity²

 $>T_{offset}$: t₁-t₂ includes time offset difference b/w 2 channels.

<u>Goal</u>

- Calibrate v_{eff} and T_{offset} .
- Hit distribution should be aligned less than position resolution ~ 1cm.

Motivation

- Calibrate length of signal line
- Better performance in the later analysis
 - Better clustering/tracking in pTC
 - Matching b/w pTC and Cylindrical Drift Chamber (e⁺ tracker).
- Pileup rejection

How to calibrate

• Hit distribution within a counter is aligned to design value.

MITSUTAKA NAKAO **★** Page: **17**/20

JPS Annual Meeting 2018 (25aL401-3)

Position

Fitting

- Fitting function(red): trapezoid(blue) convoluted with Gaussian^{*,**}.
 - "center": calibration of Toffset b/w 2 channels/effective velocity.
 - > "length": calibration of effective velocity.
 - > "sigma": interpreted as position resolution.
- Uncertainties of the fitting are estimated using MC to be the followings;

center: 0.11 cm, length: 0.27 cm, sigma: 0.14 cm

Position

Results

- Effective velocity (12.44±0.40) under the beam is consistent with lab test using ⁹⁰Sr source (measured at 3 fixed points).
- Toffset b/w 2 channels are reasonable taking into account signal line and electronics contributions.
- Hit distribution is aligned (see below).
- Fitting uncertainties: center(0.11 cm), length(0.27 cm) is better than requirement (~1 cm).

JPS Annual Meeting 2018 (25aL401-3)

MITSUTAKA NAKAO **★** Page: **19**/20

Summary

۲۰^{۵۵)} <u>Time Calibration</u>

- Full laser system was successfully installed.
- Time offset is enough stable ~ 2.5 ps over 1 month.
- We have established 2 complementary methods to calibrate time offset b/w counters: laser-based method and track-based method.

Today² <u>Position Calibration</u>

- Effective velocity and time offset b/w 2 channels are calibrated.
- Hit distribution is aligned better than position resolution.

Conclusion

- pTC calibration is established and ready for physics run.
- Performance evaluation of pTC and its prospects \rightarrow see next talk!