MEG II実験陽電子スペクトロメータ における検出効率改善のための 再構成アルゴリズムの研究

宇佐見正志、他 MEG II コラボレーション 2018年9月15日 日本物理学会2018年秋季大会@信州大学

Introduction

- □Introduction
 - ✓MEG II experiment
 - ✓Positron spectrometer
- ■Performance study on positron spectrometer
- □Summary and prospect

$\mu \rightarrow e \gamma search$

□ Charged Lepton Flavor Violation (cLFV);

- ✓Prohibited in standard model
 - Even with neutrino oscillation, ${\rm Br}(\mu\to e\gamma)\sim {\rm O}(10^{-54})$

✓ Predicted in beyond standard model

- Many models (SUSY-GUT, Extra-dimension etc…), ${\rm Br}(\mu\to e\gamma)\sim {\rm O}(10^{-14})$

DTo discover $\mu \rightarrow e\gamma$ means to discover the new physics!

Expected branching ratio is within the reach of experiment. Current upper limit (MEG, 2016): $Br(\mu \rightarrow e \gamma) < 4.2 \times 10^{-13}$ (90% C.L.) Target sensitivity of MEG II: $Br(\mu \rightarrow e \gamma) \sim 6 \times 10^{-14}$

SUSY-Seesaw : S. Antusch et al. "Impact of θ_{13} on Lepton Flavour Violating processes within SUSY Seesaw" Journal of High Energy Physics 2006 (11), 090 SO(10) SUSY-GUT : Lorenzo Calibbi et al. "Flavour violation in supersymmetric SO(10) unification with a type II seesaw mechanism." JHEP, 0912:057, 2009. にMEG、MEG IIの範囲を書き足して作成 MEGの最終結果 : A.M.Baldini et al. "Search for the lepton flavour violating decay $\mu^+ \rightarrow e^+\gamma$ with the full dataset of the MEG experiment", Eur. Phys. J. C (2016) 76:434

MEG II Experiment Detectors

□<u>Positron spectrometer:</u> 15pS28 4--5

□LXe gamma-ray detector: 16aS41 7--8

□Radiative decay counter: 16aS41 5

LXe: Baldini, A.M., Baracchini, E., Bemporad, C. et al. Eur. Phys. J. C (2018) 78: 380. "The design of the MEG II experiment" arXiv: arXiv:1801.04688v1 [physics.ins-det]

DCH : Taken by DCH group in Dec.

RDC: 2017年秋季大会大強度 µ+粒子ビーム中で動作する MEG II 実験輻射崩壊同定用カウンターの開発, K leki

MEG II Experiment Detectors

Positron Timing Measurement to Search for Lepton Flavor Violating Decay in <u>MEG II, Miki Nishimura,</u> May 2018, Doctor thesis (The Univ. of Tokvo)

D<u>Positron Spectrometer:</u>

- Superconducting magnet + Drift Chamber + Timing Counter
- ✓ Superconducting magnet & magnetic field measurement: Next talk

Positron Spectrometer Detectors

Drift Chamber (CDCH)

- ✓ Ultra-low mass (90% helium based gas mixture + 10% isobutene) cylindrical drift chamber with stereo wires
- \checkmark 192 drift cell (~7mm \times 7mm) in each layer
- ✓ The most outer layer was reduced (10 -> 9 layers design) to be on schedule for commissioning
- ✓ Detector construction completed. Detector will be installed in this year.

Pixelated Scintillation Counter

□Timing Counter (TC)

- \checkmark Composed of 512 scintillation counters
- ✓ Each counter has 6-series connected SiPMs on both sides of scintillator (BC 422)
- ✓ Using multiple hit information
- ✓ Cooling system is updated to suppress radiation damage effect (dark current increase)
- ✓ Ready for physics run.

Drift cell & single counter: Baldini, A.M., Baracchini, E., Bemporad, C. et al. Eur. Phys. J. C (2018) 78: 380. arXiv: arXiv:1801.04688v1 [physics.ins-det]

Requirement for e⁺ Spectrometer

□<u>Upgrade from MEG:</u>

- ✓ × 2 higher beam intensity : $3 \times 10^7 \rightarrow 7 \times 10^7 \,\mu/s$
- ✓×2 better detector resolution : See result page
- ✓ × 2 positron reconstruction efficiency : $30 \% \rightarrow 70 \%$

□<u>Challenging</u>

- ✓ Background events drastically increased $(BG_{accidental} \propto (Beam \, rate)^2)$
- ✓ 3-4 times hit occupancy in CDCH cell compared with MEG case
 - 1.7—0.8 MHz/cell
 - <Nhit> ~ 650 in event in 250 ns
- ✓Higher radiation environment
- Understanding and upgrading more effective analysis are essential to achieve target sensitivity !

Positron Reconstruction

- □Introduction on MEG II experiment
- □Performance study on positron spectrometer
 - ✓Overview
 - ✓Analysis review
 - ✓ Final result
- □Summary and prospect

Analysis Overview

Positron Reconstruction

purple wires are not shown in 2D

Positron Reconstruction

Difficulty comes from
✓ ~1MHz Hits/cell in CDCH
✓ Short track information

Efficiency @ 2018 Spring

12

Reference: Positron Timing Measurement to Search for Lepton Flavor Violating Decay in MEG II, Miki Nishimura, May 2018, Doctor thesis (The Univ. of Tokyo)

Analysis Review

Introduction on MEG II experimentPerformance study on positron spectrometer

- ✓Overview
- ✓Analysis review
- ✓ Final result
- ■Summary and prospect

Updates Summary

- CDCH tracking reconstruction
 - ✓ 9 layer scheme
 - ✓ Broken wire effect investigation
 - \checkmark z reconstruction by time difference
 - \checkmark Additional seeding combination
 - ✓ Shared hits comparison in tracks✓ TOF correction and recalculation
- □ Information matching
 - ✓ Added Timing information
 - ✓ Backward matching
 - ✓ Refinement
- □TC Cluster Reconstruction
 - \checkmark Added position information
 - \checkmark CDCH independent tracking for seed
- ■And many more updates during this summer!

TC Cluster Reconstruction

Timing Reconstruction from TC cluster 15

TC cluster reconstruction was done based on "time"This time we added "position information" for criteria

✓ Sometimes small radius turn positrons after scattering makes tail events. Based on hit position, we remove those hits.

Track Reconstruction

Track Reconstruction from CDCH hits

16

□Tracking Strategy: Local method (Track following) based on Kalman Filter technique

- ✓ Track is started from track seed
- ✓ Track is prolongated by Kalman Filter to add hits through layers from seeds

✓ Fit the segments with GENFIT

Kalman Filter

Efficient recursive algorithm to estimate the state vector and its covariance matrix based on previous states.

<u>GENFIT</u>

A generic toolkit for track reconstruction for experiments in particle and nuclear physics.

Track Reconstruction

Track Reconstruction from CDCH hits

Basic seed process:

- 1. Timing from possible TC cluster or nearest 3 wires
- 2. 2 consecutive hits (pair) in the same layer is picked up
- 3. 2 pairs from nearest layer is combined
- 4. Start track following

Additional seeding patterns

- 1. More T0 pattern
- 2. Seed w/ 2 gap
- 3. 3 unused wires (Default unused option)
- 4. Seed from TC cluster track (under development)

TOF (Path Length)

18

■TOF calculation is one of main improvement from MEG ✓75 ps in MEG

✓14.8 ps were reported by MC study in Spring

We iterated the calculation with smoothed track (used smoothed track trajectory for calculation) and it became ~ 7 ps resolution. × 10 improvement from MEG

CDCH-TC Matching

CDCH-TC Matching & Refinement

- CDCH track and TC cluster is matched based on extrapolated "position"
 - \checkmark < 5 σ difference b/w CDCH and TC
- We also added timing difference b/w tracks and TC for criteria
 - ✓15 ns timing window
 - ✓Roughly ~ 30% background matching cut, avoid fake matching event

CDCH-TC Refinement

Development ■After matching we recalculate the drift distance based on TOF calculated from CDCH track length and timing from TC cluster

 \checkmark More precise drift time can be calculated

■By using more precise drift distance, we can get more precise track

20

CDCH-TC Matching

Point time

 T_0

TOF

R

✓ Currently we succeed in improving re-calculation of drift distance, but not yet completed the fitting & extrapolation process

Result

□Introduction on MEG II experiment

■Performance study on positron spectrometer

- ✓Overview
- ✓Analysis review
- ✓Result
- ■Summary and prospect

Efficiency and resolutions @2018 Autumn

Positron Reconstruction

■Though CDCH layer was reduced, 60±1% efficiency was obtained from analysis development.

✓Better efficiency is expected by…

- More seeding pattern (from TC cluster track)
- Hit reconstruction optimization, additional global track finding etc…

Resolutions

Positron Reconstruction

Positron Resolution	MEG	Design (10 layer)	Updated (9 layer)
Theta (mrad)	9.4	5.3	5.9
Phi (mrad)	8.7	3.7	5.3 ※ A
Momentum (keV)	380	130	83
Vertex Z (mm)	2.4	1.6	1.3
Vertex Y (mm)	1.2	0.7	0.72
Positron time (ps)	108	46	49 ※ B

%A. Correction based on theta and phi correlation is not applied, though expected value include it. %B. 1 year radiation damage effect is roughly simulated, w/o cooling condition. $\sigma(T_{calib}) \sim 10 \text{ ps}, \sigma(T_{WDB_sync}) \sim 25 \text{ ps}$ is added. (Baldini, A.M., Baracchini, E., Bemporad, C. et al. Eur. Phys. J. C (2018) 78: 380.)

□Good resolutions were obtained compared with expected values□Better resolution is expected from…

✓ Tracking: Iteration fitting with re-calculated drift distance etc...

Summary & Prospect

□Positron spectrometer

- ✓ Detectors are ready for commissioning in this winter
- ✓CDCH+TC positron reconstruction algorithms are being developed, aiming at 70% reconstruction efficiency (designed value)
- ✓ Currently we simulated $60\pm1\%$ efficiency with 9 layer CDCH
 - Great progress & encouraging result in each reconstruction step during this summer by positron analysis group!
- □To improve the reconstruction efficiency, what can we do? ✓Additional seeding pattern (TC tracking w/o CDCH information)
 - ✓Try global pattern recognition methods in addition to local method
 - $\checkmark {\rm Re-calculation}$ of drift distance, iterate the fitting process
 - \checkmark Hit reconstruction optimization etc....

Backup

Resolution Histograms

10 Layer

10 Layer vs. 9 Layer @ Autumn

Positron Resolution	Design (10 layer)	Updated, 3000eve (10 layer)	Updated,2000eve (9 layer)
Theta (mrad)	5.3	5.9	5.9
Phi (mrad)	3.7	5.6	5.3 ※ A
Momentum (keV)	130	82	83
Vertex Z (mm)	1.6	1.3	1.3
Vertex Y (mm)	0.7	0.75	0.72
Positron time (ps)	46	48	49 ※ B

65±1% 10 layers -> 9 layers: -8% effect