MEG II 実験の準備状況と
今後の展望

東京大学 素粒子物理国際研究センター
岩本敏幸 他MEG II コラボレーション
2018年9月14日
日本物理学会2018年秋季大会＠信州大学

JSPS Core-to-Core Program
Introduction

- Flavor physics
 - Why do we have three generations in the SM?
- charged Lepton Flavor Violation
 - FV happens in quark, neutral lepton sector
 - Why not in charged lepton sector?
- $\mu \rightarrow e\gamma$
 - Long search history since the muon has been discovered.
 - Negative results contribute to the SM formation
 - In SM + neutrino oscillation, $\text{Br}(\mu \rightarrow e\gamma) \sim 10^{-50}$
 - Many new physics scenarios predict large $\text{Br}(\mu \rightarrow e\gamma)$
MEG II Experiment

- MEG/MEG II experiment
 - MEG/MEG II are designed to search for such regions where new physics like SUSY-GUT, SUSY-seesaw predict
 - Real chance to discover new physics

- Start new physics search next year
 - Target sensitivity : 6×10^{-14}
 - 10 times better sensitivity with three years data taking than MEG
 - MEG sensitivity : 5.3×10^{-13}
 - MEG final results : $4.2 \times 10^{-13} \text{ @} 90\% \text{CL}$ (Eur. Phys. J. C 76(8),434(2016))

- New μ-e conversion, $\mu \rightarrow 3e$ experiments will follow soon

History of CLFV experiments with muons

[Graph showing history of CLFV experiments with muons]

MEG II Experiment

- Liquid Xenon γ Detector
 - Better uniformity w/ VUV-sensitive 12x12mm² SiPM
- 16aS41-7, 8 小林, 小川
- Radiative Decay Counter
 - Further reduction of radiative BG
- 16aS41-5 恩田

- Gamma-ray (γ)
- Muon (μ⁺)
- Positron (e⁺)

- COBRA SC Magnet
 - 15pS28-5 家城
- Downstream
- Upstream
- Positron Timing Counter
 - 7x10⁷/s
 - 30ps resolution w/ multiple hits
- Drift Chamber
 - Single volume He:iC4H10 small stereo cells
 - 15pS28-4 宇佐見
- x2 resolution everywhere
Current status

- All the detectors except for CDCH are constructed.
- Pilot run with partial electronics was successfully carried out in Nov.–Dec.

- Struggle with the **wire braking issue** on CDCH.
- Struggle with the **noise issue** on the readout electronics.

⇒ >2 years delay from the original (2013) schedule.

- This year all the detectors will get ready.
- Full electronics will be ready toward the end of the year.

⇒ Carry out **full engineering run**, but not physics run this year.
Current status (update from 2018 spring)

- CDCH
 - Wire breaking issue seems to be solved by humidity control, and the assembly is finished.
 - CDCH finally sent to PSI

- WaveDREAM
 - Still struggling with the noise issue, and the mass production has not started yet
 - This year we can not start engineering run due to this problem

- LXe detector
 - Light yield was saturated at the half of the maximum level

- Schedule
 - Now Mu3e beam time at the upstream side of the experimental site
 - In October, integration of all the detectors into the experimental site
 - In November - December, MEG II muon beam time is planned
CDCH

- Chamber construction work finished
 - The problem of broken wires seems to be solved by careful control of humidity
- HV supply test
 - performed before bringing the CDCH from PISA to PSI
- However, we found another problem
 - current instability of many channels observed before reaching the nominal HV
 - three most inner layers are critical
 - Drift cell at center
 - 5.8mm (inner layer)
 - -7.4 mm (outer layer)
CDCH

- Limited # electronics channels, and HV are supplied locally.
 - Drift cell instabilities have position dependence
 - Worse parallelism of end plate? ~350 μm
- Inner three layers had a worse situation
 - Smaller drift cells, lack of wire tension?
 - Wire length checked again, and 1mm longer than what was measured before
- Decide to re-open the chamber and correct the wire tension and the parallelism of the end plate
CDCH

• Making CDCH longer by 0.6mm
 - no short circuit observed

• Both endplate parallelized better
 - uniformity recovered (sector 0, 11 relative to 5, 6)

• Assembly work done again

• Shipped to PSI on 31st/July
 - He: Isobutane = 85 : 15 are supplied at PSI for the first time
 - All the HV cards became available at Mid. Aug.

• Now HV conditioning in progress outside the detector hut
 - Up to now, ~1000V are achieved (working condition will be ~1500V)

• Beg. October installation into the MEG II experimental site if everything is ok
TC

- Full counters were tested under muon beam, and expected performance was confirmed (~30ps)
- Radiation damage can be mitigated by low temperature operation
 - 30% time resolution deterioration at 100μA at 30°C becomes 5% at 10°C
- Cooling test performed at open space
 - 20°C was already achieved
 - Water chiller system plus cooled dry air
 - Cool down test down to 10°C will be done in the detector hut with air conditioning system
LXe detector

• Last year
 • light yield reached 90% of expected by gaseous/liquid purification
 • After some readout PMTs are modified, it changed to 70% of expected

• This year
 • Started detector operation in June
 • unexpectedly the light yield is saturated at 50% of expected
 • Molecular sieves have some problem? Replacement work in progress
MPPC position survey

- X-ray measurement again this year
 - Measure MPPC positions in LXe directly
 - Absolute MPPC position comparison with more lead strips
 - last year, ~1mm discrepancy was observed
 - Stability of MPPC position after thermal cycle

- Waveform data are taken
 - last year only event rate (scaler) was used.
 - Online trigger can veto cosmic ray events
 - S/N improved from 1 to 5

- Results
 - No significant displacement from the thermal cycle
 - Again, the laser survey and the lead strip data show discrepancy. Careful checks are in progress.
Noise

• High/low frequency coherent noises are observed for both PMT and MPPC

• High frequency noise
 • mainly coming from waveform digitizer
 • Related to 80MHz system clock
 • Try to remove the high frequency noise by offline analysis

• Low frequency noise
 • dominant source for charge estimation
 • Still limited number of channels, but already 1% contribution to charge RMS

• Energy resolution will be checked by CW Li 17.6MeV γ monochromatic calibration
RDC

- **Downstream RDC**
 - In 2017 RDC + LXe data taking was performed, and radiative muon decay events are successfully observed
 - Data analysis and the comparison with MC in progress

- **Upstream RDC**
 - Considering the possibilities to use silicon sensor, RPC etc.

LXe Event Display

DCH mockup

\[T_{RDC} - T_{LXe} \ (data) \]

\[N_{RMD_detected} \]

BG Rate
WaveDAQ

- **New DAQ/Trigger system**
 - Waveform digitizer, amplifier, SiPM voltage supply, trigger are integrated in a card
 - 6 crates (=1500ch.) are now available for test

- **Noise study from hardware point of view**
 - Test of common mode choke: mainly to remove high frequency noise

- **Baseline slope**
 - Drop caused by temperature dependent leakage current in DRS
 - Cells at right are read out later → more time for leakage → slope
 - Need to keep the temperature constant

- **Next year mass production for all ch.**
Prospects 2018

<table>
<thead>
<tr>
<th></th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXe</td>
<td>Purification and Calibration</td>
<td>CW + Muons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Removal</td>
<td>Installation</td>
<td>In operation</td>
<td></td>
</tr>
<tr>
<td>CEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Ray</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam</td>
<td></td>
<td>US connections</td>
<td>Muon beam tuning</td>
<td></td>
</tr>
<tr>
<td>Wall</td>
<td>Wall Removal 12-14.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDCH</td>
<td>Gas System + HV Test + Conditioning</td>
<td>Install inside Cobra</td>
<td>Conditioning + Commissioning</td>
<td>Muons</td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Points
- **CDCH Preparation**
- **Detector Integration**
- **Beam Tuning**
- **Muon beam LXe + TC + CDCH + RDC**
Summary

• All the MEG II detectors are finally at PSI, and will be installed into the experimental site in October.

• Muon beam time is scheduled with all the detectors and limited number of readout electronics in November-December.

• Next year after the mass production of the readout electronics, engineering run and physics run will be started.
Sum of # of p.e. of PMTs from an alpha source

LXe purification

MEG I nominal level
~10%

gXe purification
~30%

gXe purification

07/23 08/22 09/21 10/21 11/20

07/23 08/22 09/21 10/21 11/20 11/8 11/20

• Beam time in 2018 for MEG II is allocated as requested (by Stefan)
HIPA operation

Betrieb Protonen-Anlagen 2018-2020

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mrz</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Dez</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>Beschleuniger</td>
<td>Resonator 2</td>
<td>Betrieb</td>
<td>Resonator 4</td>
<td>Betrieb</td>
<td>Verstärker</td>
<td>Betrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. Strahlstrom</td>
<td>1.0 mA</td>
<td></td>
<td>2.0 mA</td>
<td></td>
<td>2.4 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamdump</td>
<td>neuer BHE1</td>
<td></td>
</tr>
<tr>
<td>Target E</td>
<td>4 cm</td>
<td></td>
<td>started oder 6 cm</td>
<td></td>
<td>started oder 4 cm (abweisen 6 cm?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINQ Betrieb</td>
<td>Shutdown</td>
<td>Betrieb</td>
<td>SINQ Upgrade</td>
<td></td>
<td>SINQ Upgrade</td>
<td>Betrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Nr.</td>
<td>Target 13</td>
<td></td>
</tr>
<tr>
<td>UCN Betrieb</td>
<td>Testexperimente</td>
<td></td>
<td>Test</td>
<td></td>
<td>ITech Experimente</td>
<td>n3DXM Betrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myonen (LMUBLTP)</td>
<td>Betrieb</td>
<td></td>
</tr>
</tbody>
</table>

- **Umbau**
- **Betrieb**

Klaus Kirch, PSI

Stand: 20.09.2017
Pileup analysis

Reconstructed E_y Spectrum (BG y)
Positron analysis
Target preparation