波形シミュレーションを用いたMEG II陽電子タイミングカウンターの性能評価

宇佐見正志、他MEG II コラボレーション
日本物理学会第72回年次大会
2017/03/20＠大阪大学 豊中キャンパス
Overview

• MEG II Overview
• Waveform Simulation
• Afterpulse Measurement
• Application of Waveform Simulation
• Summary and Prospect
MEG II experiment

The most sensitive $\mu^+ \rightarrow e^+ \gamma$ search experiment in the world with the most intense DC muon beam at PSI

✓ In Standard Model

strongly suppressed and cannot be found by experiment

✓ In Beyond Standard Model with SUSY-GUT, SUSY-seesaw model ...

$\text{Br}(\mu^+ \rightarrow e^+ \gamma)$ becomes larger and we can find by experiment!

To discover $\mu^+ \rightarrow e^+ \gamma$ means to discover new physics!
MEG II experiment—detectors—

Liquid Xe Detector
Detect gamma-rays with MPPCs and photomultiplier tibe

Radiative Decay Counter (RDC)
Detect low-energy positron
Tag BG event

Drift Chamber
Track positron

MEG II unprecedented sensitivity:
$\text{Br}(\mu^+ \rightarrow e^+ \gamma) \approx 4.0 \times 10^{-14}$
($\times 10$ better than MEG experiment!)

positron Timing Counter (pTC)
Get the timing of positron
Positron Timing Counter

Features:
- Small pixels (512 pixels)
- 6 series SiPM + fast scinti.
- Using multihit information
- Time resolution ~ 30ps

Analysis Flow of Timing Counter

1 pixel counter
- ultra-fast plastic scintillator (BC422) + reflector
 - 120mm x 40mm x 5mm
 - 120mm x 50mm x 5mm

Support structure and laser fiber for calibration

6 series SiPM on PCB
- SiPM: ASD-NUV3S-P High-Gain (MEG)

1 pixel counter and PCB are depicted in the image.
Overview

- MEG II Overview
- **Waveform Simulation**
- Afterpulse Measurement
- Application of Waveform Simulation
- Summary and Prospect
Waveform Simulation

Motivation
☆ Deep understanding on detector
☆ Evaluate the detector performance

1. Set up
 Set detectors
 Event generation

2. Photon Tracking
 Record hit pixel & time

3. Simulate Waveform
 By using hit information & SiPM’s response

4. Waveform Analysis
 Get the time resolution

Application
✓ Physics process in detector
✓ Noise effect on performance
✓ Pile up effect w/ actual MEG II physics run setup
✓ **Radiation damage and current increase effect** etc...

Using *measured* parameters
Ex. Dark count rate, Recovery time, Prompt Cross Talk probability
Probability of afterpulse & delayed cross talk
Time const of afterpulse & delayed cross talk
Waveform Simulation Status

Already studied & included SiPM noises:
- Cross talk, Dark noise, White noise, etc.

(Ref. JPS Slide {http://meg.icepp.s.u-tokyo.ac.jp/docs/talks/JPS/2016s/yoshida_jps2016s.pdf})

Not studied & included SiPM noises:
- Afterpulse, Delayed cross talk

Including all noises properly must be done to simulate pulse & understand detector

Model of SiPM
- Photons
- Trap & Re-emittance (Afterpulse)
- Diffuse to neighboring pixels (Delayed cross talk)

Source:
- hep-www.px.tsukuba.ac.jp/~hontaku/MPPCSchool/slides/MPPCshibata.pptx
- 23Pの図を引用、一部変更
Afterpulse measurement

• MEG II Overview
• Waveform Simulation
• Afterpulse Measurement
• Application of Waveform Simulation
• Summary and Prospect
There are some previous studies on afterpulse measurement.

The number of component

- 2 afterpulse component & 0 delayed cross talk component
- 1 afterpulse component & 1 delayed cross talk component

Measurement method

Many of afterpulse measurement uses:

- waveform analysis & deconvolution

 ->to suppress the tail of pulse

Measurement set up

- Random trigger (ch3)
- Pocket pulser (+ divider)
- Thermal chamber @30deg
- HV
- SiPM
- Amp
- DRS
- Dark noise (ch1)
- Waveform analysis

Waveform acquired by DRS

- 1st pulse (Random noise)
- 2nd pulse

Deconvolution
Measurement Result

Model assumption
✓ Delayed cross talk occurs at only neighboring pixel
✓ Afterpulse occurs at only the same pixel
✓ Only 1 delayed cross talk & afterpulse can occur from 1 avalanche
✓ The time distribution of 2nd pulse obeys to:
\[
\frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} \text{ or } \frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}}
\]

<table>
<thead>
<tr>
<th>Model case</th>
<th>Delayed Cross Talk</th>
<th>After-pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(\bigcirc) (p_{DCT})</td>
<td>(\times) ((1-p_{AP}))</td>
</tr>
<tr>
<td>b</td>
<td>(\bigcirc) (p_{DCT})</td>
<td>(\bigcirc) (p_{AP})</td>
</tr>
<tr>
<td>c</td>
<td>(\times) ((1-p_{DCT}))</td>
<td>(\bigcirc) (p_{AP})</td>
</tr>
<tr>
<td>d</td>
<td>(\times) ((1-p_{DCT}))</td>
<td>(\times) ((1-p_{AP}))</td>
</tr>
</tbody>
</table>

2D plot of 2nd pulse distribution

Delayed cross talk + Random noise

Afterpulse

Time difference b/w 1st pulse and 2nd pulse [s]
Model and Fitting

At this model we can get 4 parameters (common to P_1 & P_2) only by fitting.

\[
P_1(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{1a} + P_{1b} + P_{1c} + P_{1d}
\]

\[
P_2(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{2b} + P_{2c}
\]

Fitting function is:
\[
N_1(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = N_{\text{trigger window width}} P_1/I_{\text{dead time cor.}}
\]
\[
N_2(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = N_{\text{trigger window width}} P_2/I_{\text{dead time cor.}}
\]

<table>
<thead>
<tr>
<th></th>
<th>p_{DCT}</th>
<th>p_{AP}</th>
<th>τ_{DCT}</th>
<th>τ_{AP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>22.3%</td>
<td>31.6%</td>
<td>78.5ns</td>
<td>107ns</td>
</tr>
<tr>
<td>Individual difference</td>
<td>± 1.2%</td>
<td>± 0.6%</td>
<td>± 4.7ns</td>
<td>± 12ns</td>
</tr>
<tr>
<td>Error of each fitting</td>
<td>~3%</td>
<td>~3%</td>
<td>~5%</td>
<td>~10%</td>
</tr>
</tbody>
</table>

1D Plot of Time difference

Afterpulse

Random Noise & Delayed Cross Talk

Average

Individual difference

Error of each fitting

800

3000

200ns

200ns

800

※-1μs is offset for combined fitting

Time difference b/w 1st pulse and 2nd pulse [s]

Average

Individual difference

Error of each fitting

800

3000

200ns

200ns

800

※-1μs is offset for combined fitting

Time difference b/w 1st pulse and 2nd pulse [s]

Average

Individual difference

Error of each fitting

800

3000

200ns

200ns

800

※-1μs is offset for combined fitting

Time difference b/w 1st pulse and 2nd pulse [s]

Average

Individual difference

Error of each fitting

800

3000

200ns

200ns

800

※-1μs is offset for combined fitting

Time difference b/w 1st pulse and 2nd pulse [s]

Average

Individual difference

Error of each fitting

800

3000

200ns

200ns

800

※-1μs is offset for combined fitting

Time difference b/w 1st pulse and 2nd pulse [s]

Average

Individual difference

Error of each fitting

800

3000

200ns

200ns

800

※-1μs is offset for combined fitting

Time difference b/w 1st pulse and 2nd pulse [s]
Waveform Simulation

• MEG II Overview
• Waveform Simulation
• Afterpulse Measurement
• Application of Waveform Simulation
• Summary and Prospect
Radiation damage

✓ Current increase by radiation damage @ past pilot run

✓ Expected current increase: 100~200 μA
 (25 week × 3 year physics run)

At this current level, time resolution may be deteriorated
Check the effect from simulation by changing dark count rate

Pilot run (2015 Dec.) current monitor

2 days @ MEG II expected intensity

~0.5 μA increase each
Simulation Result

The effect on gain: no significant deterioration
The effect on time resolution: ~16%-34%

The deterioration level is not so serious: Estimated ~few % for overall sensitivity
But we have to check operation of Timing Counter @ high current level

Time resolution is defined as:
\[
\sigma \left(\frac{t_{\text{right}} + t_{\text{left}}}{2} \right)
\]

The time when height becomes 20% of peak height

Dark Count Rate vs. Time resolution

Pixel

t_{\text{left}}

e^{-}

t_{\text{right}}

Sr90

trigger counter

~75ps

Average

~100-200 μA

Dark Count Rate [MHz]

Time resolution [s]
Summary and prospect

- **Waveform simulation**
 For deep understanding on detector, we are developing the simulation scheme

- **Afterpulse measurement for waveform simulation**
 Calculation of simple & intuitive afterpulse + delayed cross talk model
 Fitting and analysis to get:
 - Probability of afterpulse (31.6%) & delayed cross talk (22.3%)
 - Time const of afterpulse (107 ns) & delayed cross talk (78.5 ns)
 Model comparison w/ previous studies & more systematic study will be done

- **Application of waveform simulation**
 One example of application: Radiation damage effect on time resolution
 - ~16-34% deterioration on time resolution
 It is not so serious but we **have to check the operation** @ high current level
Back up
AfterPulse + Delayed Cross Talk Model

- **AP**: AfterPulse
- **DCT**: Delayed Cross Talk
- **RN**: Random Noise

- **Trigger pulse (Dark noise)**
 - **pAP*(1-pDCT)**: Trapped by AP component
 - pAP*(1-p1DCT)
 - pAP*pDCT
 - (1-pAP)*(1-pDCT)
 - **Trapped by DCT + AP component**
 - **AP & DCT did not happen**

- **Afterpulse**
 - **Afterpulse**
 - **Random noise**
 - **Random noise**
 - **Random noise**
 - **DCT**
 - **DCT**
 - **DCT+RN**
 - **AP+RN**
 - **AP+DCT**
 - **Random noise**

Mathematical Equations:

- \(p = \frac{1}{\tau_{AP}} e^{\frac{t}{\tau_{AP}}} \)
- \(p = \frac{1}{\tau_{N}} e^{\frac{t}{\tau_{N}}} \)
- \(p = \frac{1}{\tau_{DCT}} e^{\frac{t}{\tau_{DCT}}} \)
- \(\int_{t}^{\infty} \frac{t}{e^{\frac{t}{\tau_{N}}} dt} = \frac{t}{e^{\frac{t}{\tau_{AP}}}} \)
Calculation of fit function \(-RN + DCT-\)

-1-Detected at DCT+RN region

 -1a-Trapped by only DCT component

 \[
P_{1a} = p_{DCT}(1 - p_{AP}) \left(1 - e^{-\frac{t}{\tau_{DCT}}} \times \int_t^\infty e^{-\frac{t}{\tau_{RN}}} dt + \frac{1}{\tau_{RN}} \int_t^\infty e^{-\frac{t}{\tau_{DCT}}} \int_t^\infty e^{-\frac{t}{\tau_{AP}}} dt \right)
 \]

 \[
 = p_{DCT}(1 - p_{AP}) \frac{\tau_{DCT} + \tau_{RN}}{\tau_{DCT}\tau_{RN}} e^{-\frac{t}{\tau_{DCT} + \tau_{RN}}}
 \]

-1b-Trapped by AP and DCT component

 \[
P_{1b} = p_{DCT}p_{AP} \left(1 - e^{-\frac{t}{\tau_{DCT}}} \times \int_t^\infty e^{-\frac{t}{\tau_{RN}}} dt \int_t^\infty e^{-\frac{t}{\tau_{AP}}} dt + \frac{1}{\tau_{AP}} \int_t^\infty e^{-\frac{t}{\tau_{DCT}}} dt \int_t^\infty e^{-\frac{t}{\tau_{AP}}} dt \right)
 \]

 \[
 = \frac{\tau_{RN} + \tau_{DCT}}{\tau_{DCT}\tau_{RN}} e^{-\frac{t}{\tau_{DCT}\tau_{RN} + \tau_{AP}\tau_{DCT} + \tau_{RN}\tau_{AP}}}
 \]

-1c-Trapped by AP component (and RN is detected)

 \[
P_{1c} = p_{AP}(1 - p_{DCT}) \left(1 - e^{-\frac{t}{\tau_{RN}}} \times \int_t^\infty e^{-\frac{t}{\tau_{AP}}} dt \right) = p_{AP}(1 - p_{DCT}) \left(1 - e^{-\frac{t}{\tau_{RN}}} e^{-\frac{t}{\tau_{AP}}} \right)
 \]

-1d-No trap

 \[
P_{1d} = (1 - p_{AP})(1 - p_{DCT}) \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}}
 \]
Calculation of Fit Func. -AP-

-2- Detected in AP region

-1b-Trapped by AP and DCT component

\[P_{2b} = p_{DCT}p_{AP} \left(\frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} \times \int_{t}^{\infty} \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} dt \int_{t}^{\infty} \frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} dt \right) \]

\[= p_{DCT}p_{AP} \frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} \frac{1}{\tau_{DCT}\tau_{RN}\tau_{AP}\tau_{RN}} \]

-1c-Trapped by AP component

\[P_{2c} = p_{AP}(1 - p_{DCT}) \left(\frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} \times \int_{t}^{\infty} \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} dt \right) \]

\[= p_{AP}(1 - p_{DCT}) \frac{1}{\tau_{AP}} e^{-\frac{\tau_{AP} + \tau_{RN}t}{\tau_{AP}\tau_{RN}}} \]

So, Fit Func. is

\[P_1(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{1a} + P_{1b} + P_{1c} + P_{1d} \]

\[P_2(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{2b} + P_{2c} \]

<table>
<thead>
<tr>
<th>case</th>
<th>DCT</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>trap</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>trap</td>
<td>trap</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>trap</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Analysis

If 1st pulse comes to this region, we do not use that event for analysis to get primary random noise.

First pulse is in VETO -> not used

First pulse is in trigger region -> used

VETO region (300ns)
If 1st pulse comes to this region, we do not use that event for analysis to get primary random noise.

Trigger region (400ns)
If 1st pulse comes in this region, it is efficient event and search for 2nd pulse after 1st pulse.

パルス高が畳み込みの後で分解能が落ちる可能性あり

Deconvolutionのパルス幅や移動平均点数、パルス高については要調査・調整
Example of Deconvolution

Pulse width should be optimized to distinguish the pulse properly.

Parameter optimization & improvement will be studied.

Pulse width should be optimized to distinguish the pulse properly.

Parameter optimization & improvement will be studied.
Delayed Cross Talk and Afterpulse

By fitting, we got the parameters for simulation:
- AP prob.
- AP time const
- DCT prob.
- DCT time const

Also by using the 2D histogram AP region, we can get:
- recovery time
 the result was: \(185 \pm 2\) ns

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>VALUE</th>
<th>ERROR</th>
<th>SIZE</th>
<th>DERIVATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prob_DCT</td>
<td>2.18888e-01</td>
<td>5.07251e-03</td>
<td>5.36147e-06</td>
<td>-4.4471e-04</td>
</tr>
<tr>
<td>2</td>
<td>Prob_AP</td>
<td>3.07108e-01</td>
<td>5.50071e-03</td>
<td>6.57516e-06</td>
<td>2.4753e-04</td>
</tr>
<tr>
<td>3</td>
<td>TimeConst_DCT</td>
<td>7.44914e-08</td>
<td>3.16120e-09</td>
<td>3.24969e-12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TimeConst_AP</td>
<td>1.24313e-07</td>
<td>1.10581e-08</td>
<td>1.31117e-11</td>
<td>-9</td>
</tr>
</tbody>
</table>

y: Pulse height

Time difference b/w 1st pulse and 2nd pulse[s]
MEG II Sensitivity vs. Tegamma
Algorithms of simulation

DCT algorithm
DCT occurs at only neighboring pixel

The time difference (t) b/w first pulse and second pulse obeys \(\sim \frac{1}{\tau_{DCT}} e^{\frac{-t}{\tau_{DCT}}} \)

After pulse and DCT time difference is reproduced by MC method:
\[
\xi = \int_0^t \frac{1}{\tau_{DCT}} e^{\frac{-t}{\tau_{DCT}}} \, dt = 1 - e^{\frac{-t}{\tau_{DCT}}}
\]

\(\rightarrow t = -\tau_{DCT} \ln(1 - \xi) \)

where \(0 < \xi < 1 \) (random number)
Reconstruction from simulation

We could not set 1 μs window, so analysis was not the same to measurement.
Parameter is not optimized yet.

Input:
AP prob. 30%
DCT prob. 26%
AP time const. 110ns
DCT time const. 84ns
recovery time. 185 ns

This is rough analysis
Time resolution measurement set up

\[\text{time resolution} \quad \sigma \left(\frac{t_{right} + t_{left}}{2} - t_{ref} \right) \]

\(t : \) cftime of each channel

\(^{90}\text{Sr} : E < 2.2\text{MeV} \quad \beta\text{-ray} \)

Array - left

Array - right

Pixel

TC

Thermal chamber

Amp

Amp

Amp

Light Signal

Light Signal

Trigger Signal

div.

div.

DRS

R

R
参考論文について（Model & Measurement）

P9-12で参考にしたafterpulseやdelayed cross talk のモデル。今後これらのモデルとの比較も検討中。

- 修士論文 半導体光検出器 PPD の基本特性の解明と，実践的開発に向けた研究 (生出 秀行、平成21年1月8日)(http://www.icepp.s.u-tokyo.ac.jp/yamashita/archives/oide/oide_mthesis.pdf)

Afterpulse 2成分でのモデルを組み立てたもの。Fittingから確率を求めるモデルの組み立て方、ランダムノイズの切り分け、測定におけるDeconvolutionの手法等を参考にした。Recovery timeを考慮していない。

- Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier (Ferenc Nagy et al., Nuclear Instruments and Methods in Physics Research A 759 (2014) 44–49）
(http://www.sciencedirect.com/science/article/pii/S0168900214004501)

Delayed Cross Talk 1成分、Afterpulse1成分のモデル。Delayed Cross Talk 現象についての記述や、時間差が指数関数に従うこと等を参考にした。

(http://www.sciencedirect.com/science/article/pii/S0168900210008156)

Afterpulse2成分の比較的シンプルなモデル。積分から確率を求める。
その他引用など

• P8 Model of SiPMの引用
（hep-www.px.tsukuba.ac.jp/~hontaku/MPPCSchool/slides/MPPCshibata.pptx）
23Pの図を引用、基盤部を厚くし、クロストークの発生機構を省略し、Delayed Cross
Talk, Afterpulseの発生機構を追加するなどの一部追記

• P8のステータス
2015年秋季大会（https://meg.web.psi.ch/docs/talks/JPS/2015a/yoshida_jps2015a.pptx）
第71回年次大会（https://meg.web.psi.ch/docs/talks/JPS/2016s/yoshida_jps2016s.pdf）
K. Yoshida “MEG II 実験のための SiPM を用いた陽電子タイミングカウンターのシミュレーションに
よる性能評価”で報告

• P5の写真
1 pixel counterとPCBの写真は2015年秋季大会のスライドより引用