波形シミュレーションを用い たMEG II陽電子タイミング カウンターの性能評価

宇佐見正志、他MEG II コラボレーション 日本物理学会第72回年次大会 2017/03/20@大阪大学 豊中キャンパス

Overview

- MEG II Overview
- Waveform Simulation
- Afterpulse Measurement
- Application of Waveform Simulation
- Summary and Prospect

MEG II experiment

The most sensitive $\mu^+ \rightarrow e^+ \gamma$ search experiment in the world with the most intense DC muon beam at PSI

✓ In Standard Model

strongly suppressed and cannot be found by experiment

✓ In Beyond Standard Model with SUSY-GUT, SUSY-seesaw model …

 $Br(\mu^+ \rightarrow e^+ \gamma)$ becomes larger and we can find by experiment !

To discover $\mu^+ \rightarrow e^+ \gamma$ means to discover new physics !

MEG II experiment-detectors-

Liquid Xe Detector **MEG II unprecedented sensitivity :** Detect gamma-rays $Br(\mu^+ \rightarrow e^+ \gamma) \sim 4.0 \times 10^{-14}$ with MPPCs and (×10 better than MEG experiment !) photomultiplier tibe **Radiative Decay Counter(RDC)** Detect lowenergy positron Tag BG event **positron Timing Counter(pTC)** Get the timing of positron **Drift Chamber** Track positron

Positron Timing Counter

256 counters

ultra-fast plastic scintillator(BC422) + reflector 120mm x 40mm x 5mm 120mm x 50mm x 5mm

1 pixel counter

Support structure and laser fiber for calibration

<u>6series SiPM on PCB</u> SiPM : ASD-NUV3S-P High-Gain(MEG)

Features :

✓ Small pixels(512 pixels)

Timing counter

- ✓ 6 series SiPM+fast scinti.
- ✓ Using multihit information
- ✓ Time resolution ~ 30ps

5

PCB

Overview

- MEG II Overview
- <u>Waveform Simulation</u>
- Afterpulse Measurement
- Application of Waveform Simulation
- Summary and Prospect

Waveform Simulation Status

Already studied & included SiPM noises:

Cross talk, Dark noise, White noise, etc…

(Ref. JPS Slide {http://meg.icepp.s.u-tokyo.ac.jp/docs/talks/JPS/2016s/yoshida_jps2016s.pdf}))

<u>Not studied & included SiPM noises :</u> <u>Afterpulse, Delayed cross talk</u>

Including all noises properly must be done to simulate pulse & understand detector

右図引用)hep-www.px.tsukuba.ac.jp/~hontaku/MPPCSchool/slides/MPPCshibata.pptx 23Pの図を引用、一部変更

Afterpulse measurement

- MEG II Overview
- Waveform Simulation
- <u>Afterpulse Measurement</u>
- Application of Waveform Simulation
- Summary and Prospect

Model & Measurement

There are some previous studies on afterpulse measurement

The number of component

2 afterpulse component & 0 delayed cross talk component 1 afterpulse component & 1 delayed cross talk component

Measurement method

Many of afterpulse measurement uses : waveform analysis & deconvolution ->to suppress the tail of pulse

Domino Ring Sampling chip : DRS Waveform digitizer used in MEG

【ref:修士論文 半導体光検出器 PPD の基本特性の解明と,実践的開発に向けた研究研究(生出 秀行、平成21年1月8日)】AP 2 comp. 【ref2:Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier(Ferenc Nagy et al., Nuclear Instruments and Methods in Physics Research A 759 (2014) 44–49)】AP1 comp+DCT 1 comp. 【ref3 : Characterisation studies of silicon photomultipliers(Patrick Eckert et al. Nuclear Instruments and Methods in Physics Research A 620 (2010) 217–226)】AP2 comp.

Measurement Result

Model assumption

- ✓ Delayed cross talk occurs at only neighboring pixel
- $\checkmark\,$ Afterpulse occurs at only the same pixel
- ✓ Only 1 delayed cross talk & afterpulse can occur from 1 avalanche
- \checkmark The time distribution of 2nd pulse obeys to:

$$\frac{1}{\tau_{DCT}}e^{-\frac{t}{\tau_{DCT}}} \text{ or } \frac{1}{\tau_{AP}}e^{-\frac{t}{\tau_{AP}}}$$

Model case	Delayed Cross Talk	After-pulse
a	О Р _{DCT}	\times (1- p_{AP})
b	⊖ ₽ _{DCT}	○ p _{AP}
С	$\stackrel{\times}{(1-p_{DCT})}$	○ p _{AP}
d	\times (1- p_{DCT})	\times (1- p_{AP})

Model and Fitting

 $P_{1}(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{1a} + P_{1b} + P_{1c} + P_{1d}$ $P_{2}(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{2b} + P_{2c}$ Fitting function is $N_{1}(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = N_{trigger window} Bin_{width} P_{1}/I_{dead time cor.}$ $N_{1}(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = N_{trigger window} Bin_{width} P_{1}/I_{dead time cor.}$

Waveform Simulation

- MEG II Overview
- Waveform Simulation
- Afterpulse Measurement
- Application of Waveform Simulation
- Summary and Prospect

Radiation damage

- Current increase by radiation damage @ past pilot run
- ✓ Expected current increase : <u>100~200 µ A</u>
- $(25 \text{week} \times 3 \text{ year physics run})$
- At this current level, time resolution may be deteriorated
- Check the effect from simulation by changing dark count rate

Simulation Result

But we have to check operation of Timing Counter @ high current level

Summary and prospect

<u>Waveform simulation</u>

For deep understanding on detector, we are developing the simulation scheme

<u>Afterpulse measurement for waveform simulation</u>

Calculation of simple & intuitive afterpulse + delayed cross talk model Fitting and analysis to get :

Probability of afterpulse(31.6%) & delayed cross talk(22.3%)

Time const of afterpulse(107ns) & delayed cross talk(78.5ns)

Model comparison w/ previous studies & more systematic study will be done

Application of waveform simulation

One example of application :Radiation damage effect on time resolution

~16-34% deterioration on time resolution

It is not so serious but we have to check the operation @ high current level

Back up

AfterPulse + Delayed Cross Talk Model

Calculation of fit function -RN + DCT-

-1-Detected at DCT+RN region -1a-Trapped by only DCT component $P_{1a} = p_{DCT}(1 - p_{AP}) \left(\frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} \times \int_{t}^{\infty} \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} dt + \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} \int_{t}^{\infty} \frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} dt \right)$ $= p_{DCT}(1 - p_{AP}) \frac{\tau_{DCT} + \tau_{RN}}{\tau_{DCT} \tau_{RN}} e^{-\frac{\tau_{DCT} + \tau_{RN}}{\tau_{DCT} \tau_{RN}}} t$ -1b-Trapped by AP and DCT component $P_{1b} = p_{DCT} p_{AP} \left(\frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} \times \int_{t}^{\infty} \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} dt \int_{t}^{\infty} \frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} dt + \frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{RN}}} \int_{t}^{\infty} \frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} dt \int_{t}^{\infty} \frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} dt \right)$ $= \frac{\tau_{RN} + \tau_{DCT}}{\tau_{DCT} \tau_{RN}} e^{-\frac{t}{\tau_{DCT} \tau_{RN}}} t$

-1c-Trapped by AP component (and RN is detected)

$$P_{1c} = p_{AP}(1 - p_{DCT}) \left(\frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} \times \int_{t}^{\infty} \frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} dt \right) = p_{AP}(1 - p_{DCT}) \left(\frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} e^{-\frac{t}{\tau_{AP}}} \right)$$

-1d-No trap

$$P_{1d} = (1 - p_{AP})(1 - p_{DCT}) \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}}$$

Calculation of Fit Func. - AP-

- -2- Detected in AP region
- -1b-Trapped by AP and DCT component

$$P_{2b} = p_{DCT} p_{AP} \left(\frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} \times \int_{t}^{\infty} \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} dt \int_{t}^{\infty} \frac{1}{\tau_{DCT}} e^{-\frac{t}{\tau_{DCT}}} dt \right)$$
$$= p_{DCT} p_{AP} \frac{1}{\tau_{AP}} e^{-\frac{t}{DCT} \tau_{RN} + \tau_{RN} \tau_{AP} + \tau_{AP} \tau_{DCT}}{\tau_{DCT} \tau_{AP} \tau_{RN}}$$

-1c-Trapped by AP component

$$P_{2c} = p_{AP}(1 - p_{DCT}) \left(\frac{1}{\tau_{AP}} e^{-\frac{t}{\tau_{AP}}} \times \int_{t}^{\infty} \frac{1}{\tau_{RN}} e^{-\frac{t}{\tau_{RN}}} dt \right) \quad \text{case} \quad \text{DCT} \quad \text{AP}$$

$$= p_{AP}(1 - p_{DCT}) \frac{1}{\tau_{AP}} e^{-\frac{\tau_{AP} + \tau_{RN}}{\tau_{AP} \tau_{RN}} t} \quad \text{a} \quad \text{trap} \quad -$$

$$\qquad \text{b} \quad \text{trap} \quad \text{trap}$$

$$P_{1}(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{1a} + P_{1b} + P_{1c} + P_{1d}$$

$$P_{2}(p_{DCT}, p_{AP}, \tau_{AP}, \tau_{DCT}) = P_{2b} + P_{2c}$$

$$d \quad \text{c} \quad -$$

20

So, Fit Func. is

Analysis

パルス高が畳み込みの後で 分解能が落ちる可能性あり

Deconvolutionのパルス幅 や移動平均点数、パルス高 については要調査・調整

発表後追記

First pulse is in VETO ->not used

First pulse is in trigger region ->used

VETO region(300ns) If 1st pulse comes to this region, we do not use that event for analysis to get primary random noise Trigger region(400ns) If 1st pulse comes in this region, it is efficient event and search for 2nd pulse after 1st pulse

Example of Deconvolution

pulse widthが細すぎる:エレキのノイズを拾う可能性がある pulse widthが太すぎる:dark noiseを分離できない

Pulse width should be optimized to distingush the pulse properly Parameter optimization & improvement will be studied.

Delayed Cross Talk and Afterpulse

MEG II Sensitivity vs. Tegamma

Algorithms of simulation

 $\frac{\text{DCT algorithm}}{\text{DCT occurs at only neighboring pixel}}$ The time difference (t) b/w first pulse and second pulse obeys $\sim \frac{1}{\tau_{DCT}} e^{\frac{t}{\tau_{DCT}}}$

Reconstruction from simulation

1600 1400 12001000800

Input: AP prob. 30% DCT prob. 26% AP time const. 110ns DCT time const. 84ns recovery time. 185 ns

参考論文について(Model & Measurement)

P9-12で参考にしたafterpulseやdelayed cross talk のモデル。今後これらのモデルとの比較も検討中。

修士論文半導体光検出器 PPD の基本特性の解明と,実践的開発に向けた研究(生出 秀行、平成21年1月8日)(http://www.icepp.s.u-tokyo.ac.jp/yamashita/archives/oide/oide_mthesis.pdf)

Afterpulse 2成分でのモデルを組み立てたもの。Fittingから確率を求めるモデルの組み立て方、ランダムノ イズの切り分け、測定におけるDeconvolutionの手法等を参考にした。Recovery timeを考慮していない。

 Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier (Ferenc Nagy et al., Nuclear Instruments and Methods in Physics Research A 759 (2014) 44–49)

(http://www.sciencedirect.com/science/article/pii/S0168900214004501)

Delayed Cross Talk 1成分、Afterpulse1成分のモデル。Delayed Cross Talk 現象についての記述や、時間差が指数関数に従うこと等を参考にした。

 Characterisation studies of silicon photomultipliers(Patrick Eckert et al. Nuclear Instruments and Methods in Physics Research A 620 (2010) 217–226)

(http://www.sciencedirect.com/science/article/pii/S0168900210008156)

Afterpulse2成分の比較的シンプルなモデル。積分から確率を求める。

その他引用など

• P8Model of SiPMの引用

(hep-www.px.tsukuba.ac.jp/~hontaku/MPPCSchool/slides/MPPCshibata.pptx)

23Pの図を引用、基盤部を厚くし、クロストークの発生機構を省略し、Delayed Cross Talk,Afterpulseの発生機構を追加するなどの一部追記

• P8のステータス

2015年秋季大会(https://meg.web.psi.ch/docs/talks/JPS/2015a/yoshida_jps2015a.pptx) 第71回年次大会(https://meg.web.psi.ch/docs/talks/JPS/2016s/yoshida_jps2016s.pdf) K. Yoshida "MEG II 実験のための SiPM を用いた陽電子タイミングカウンターのシミュレーションに よる性能評価"で報告

• P5の写真

1 pixel counterとPCBの写真は2015年秋季大会のスライドより引用