Performance evaluation of the upstream MEG II Radiative Decay Counter

「大強度μ粒子ビーム上で運用するMEG II輻射崩壊同定用カウンターに期待される性能の評価」

岩井　遼斗 (東大理)
Introduction

- Signal & background in MEG II experiment

μ → eγ decay
- Back-to-back
- Coincident in time
- \(E_γ = E_e = 52.8 \text{ MeV} \)

Dominant BG source (accidental BG)
- Proportional to square of μ decay rate

- Source of BG γ
 1. Radiative Muon Decay (RMD)
 2. Annihilation in flight (AIF)

Smaller fraction of AIF thanks to low mass e+ tracker

- Important to reduce BG γ from RMD

MEG
- RMD
- AIF

MEG II
- RMD
- AIF

Background rate per μ decay \((×10^{-6})\)
Radiative Decay Counter (RDC)

- RDC identifies BG γ from RMD
 - Low momentum e^+ from RMD swept along the beam axis
 - RDC measures time coincidence of low momentum e^+ and BG γ on μ beam axis
- Detector requirement: Finely segmented, compact design (diameter ~20 cm)

Accidental BG (Michel decay + RMD)

- $1-5$ MeV
- >48 MeV

Only downstream detector was constructed and tested with μ beam
Upstream detector

- Upstream detector requires R&D concerning operation in high intensity μ beam ($10^8 \mu$/s)
- Provisional design: Measure timing of e^+ with layer of multi-clad scintillating fibers
 - 250 μm thick square shape fiber
 - 784 fibers are grouped into 18 bundles to reduce number of channels
 - Bundles are bent at right angles
 - Readout bundle ends with SiPM
- 28 MeV/c μ beam slowed-down by degrader
- Influence on μ beam is expected to be small (reported in previous JPS meeting)

RDC can be installed by equalizing total amount of substance
Upstream detector

- Sensitivity improvement with RDC (ideal case)

<table>
<thead>
<tr>
<th></th>
<th>MEGII sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o RDC</td>
<td>5.0×10^{-14}</td>
</tr>
<tr>
<td>w/ downstream</td>
<td>4.3×10^{-14}</td>
</tr>
<tr>
<td>w/ downstream + upstream</td>
<td>3.9×10^{-14}</td>
</tr>
</tbody>
</table>

Assuming detection efficiency:
- 100% (downstream)
- 90% (upstream)

Upstream detector has 10% efficiency loss due to fiber cladding

- In real case, detection efficiency of upstream RDC is limited by:
 1. Pile-up beam μ (large efficiency loss due to SiPM after-pulse in μ waveform)
 2. Small light yields of thin scintillating fiber

- In this study, total detection efficiency for e^+ is evaluated by considering pile-up and light yield
In beam test with prototype, we observed small light yields of e^+

- Scintillating fiber
 - 20 cm length, multi-cladding
 - 250 μm thick square shaped

- Photosensor
 - Double readout
 - 1.3×1.3 mm² SiPM

- Probability to detect no photons ~29% (single side)

- Small light yields is probably due to short attenuation length of the fiber

\[I(x) = I_0 \left(e^{-\frac{x}{\Lambda_1}} + e^{-\frac{x}{\Lambda_2}} \right) \]

- \(I_0 \) : Light output of fiber core
- \(I \) : Measured light yield at \(x \)
- \(\Lambda_1, \Lambda_2 \) : Attenuation length of core or cladding light

2.7 m in data sheet (fitted region: 1-3 m from fiber end)

Attenuating length is not measured in short region (< 1m)
Light yield study

- Items to be considered in calculation

1. Simulated energy deposit of RMD e^+

 ![Energy Deposit Graph]

 - Entries: 60553
 - χ^2/ndf: 473.7 / 372
 - Constant: 1517 ± 11.3
 - MPV: 38.52 ± 0.05
 - Sigma: 4.556 ± 0.035

 ~ 40 keV

2. Light output of fiber core

 8000 photon/MeV

 * from data sheet

3. Reflection angles to cladding wall

4. Attenuation length of fiber

 Further investigation is needed

5. PDE of SiPM

 40%

 * from data sheet

- Calculation reproduces the observed light yield by assuming attenuation length ~7 cm
Light yield study

- Attenuation length was measured for few fiber samples

![Diagram of a setup with Photodiode, LED, fiber, and Support]

Each sample was measured 3 times (0→100 cm)

- Large attenuation in short region was measured
 - Variation between sample needs to be investigated
 - Shorter region (<10 cm) should be measured

<table>
<thead>
<tr>
<th>Attenuation length</th>
</tr>
</thead>
<tbody>
<tr>
<td>short</td>
</tr>
<tr>
<td>fiber A</td>
</tr>
<tr>
<td>fiber B</td>
</tr>
</tbody>
</table>
Detection efficiency & sensitivity

- Probabilities to detect e^+ signal with several light yields

 - P_{single}: detect at single side
 - P_{OR}: detect at either side
 - P_{AND}: detect at both ends

![Graph showing detection probabilities](image)

- Observed detection efficiencies and sensitivities
Detection efficiency & sensitivity

• Detection efficiency was evaluated by considering light yield and pile-up
 • Simulated hit timing, position of μ
 • $|T(e^+) - T(\mu)| < 60$ ns in same bundle \rightarrow pile-up

• Probability to detect signal at either fiber end was calculated for each event

• Hit pattern & event by event efficiency
 • Assuming 18 bundles

Standard readout

- SiPM
- bundle

- $\mu^+ \ast \ast e^+$
 - eff. $= P_{\text{OR}}$
- $e^+ \ast \ast \mu^+$
 - eff. $= 0$

Staggered readout

- eff. $= P_{\text{OR}}$
- eff. $= P_{\text{single}}$
- eff. $= 0$
Detection efficiency & sensitivity

- Detection efficiency of $e^+ (E_\gamma > 48\text{MeV})$

- Sensitivity was evaluated with detection efficiency
 - 4.3×10^{-14} only with downstream RDC
 - Sensitivity improvement
 - w/ downstream : 16%
 - w/ downstream + upstream : 22%
 *at observed light yield
 - Further improvement is possible by increasing light yield or higher segmentation
Radiation hardness of scintillating fiber

- Another potential issue is radiation damage on scintillating fiber

 * Light yield is expected to largely drop down (~1/4 after 16 days operation)

 * Actual irradiation test in high dose environment (10^5 Gy) is needed

 - Irradiation test at proton irradiation facility at PSI is planned
Radiation hardness of scintillating fiber

- If light yield drop due to radiation damage is correct, upstream RDC based on scintillating fiber is not realistic

- We are also considering detector based on CVD diamond
 - 85 µm thick single-crystal diamond mosaic
 - Radiation tolerance (~MGy)

- Difficulty: Low charge collection of e^+ signal (~3000 e-h pairs)
 - In principle possible with commercial charge sensitive amplifier
Summary

- RDC identifies dominant source of background by detecting low momentum e^+
- We are considering further improvement of sensitivity by installing scintillating fiber based detector in μ beam
- Detection efficiency of e^+ was evaluated by considering light yields of fiber and pileup μ
 - e^+ detection efficiency $\sim 50\%$ (at observed light yield)
 - MEG II sensitivity improvement with downstream + upstream RDC $\sim 22\%$
- Further study on attenuation length of scintillating fiber is necessary to better understand performance
- Light yield is expected to largely drop due to high radiation dose (2.2 kGy/day)
 - Literatures say light yield become $\sim 1/4$ after 16 days
 - Actual irradiation test is planned
 - We are also considering to use diamond mosaic detector
Backup
Optical attenuation length measurements of scintillating fibers

N.A. Amos, A.D. Bross and M.C. Lundin

Particle Detector Group, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Fig. 13. Attenuation length curves for "core," "cladding," and "core + cladding" light.
Total detection efficiency

- Probabilities to detect scintillation photons and pileup were considered

\[
\text{Efficiency} = \frac{\text{Number of detected events by the SiPMs (either side)}}{\text{Number of entered positrons in the upstream RDC}}
\]

- Simulated hit timing, position

- Standard readout scp filename.xxx muegamma@meg.icepp.s.u-tokyo.ac.jp:/html/docs/talks/JPS/2016a/name_jps2017s.xxx
• Staggered readout

\[\mu \text{ hit in } \Delta T \]

- yes (99.7%)
 \[\Rightarrow \mu \text{ hit bundle} \]
 \[\Rightarrow \text{case A (28.7%)} \rightarrow 0 \]
 \[\Rightarrow \text{case B (26.2%)} \rightarrow P_{\text{Single}} \]
 \[\Rightarrow \text{case C (5.0%)} \rightarrow 0 \]
 \[\Rightarrow \text{case D (40.1%)} \rightarrow P_{\text{OR}} \]

- no (0.3%)
 \[\Rightarrow P_{\text{OR}} \]

\text{case A}

\[e^+ \times \times \mu^+ \]

\text{case B}

\[e^+ \times \mu^+ \]

\text{case C}

\[e^+ \times \mu^+ \]

\text{case D}

\[e^+ \times \mu^- \]
RDC data in physics analysis

- MEG II uses Maximum likelihood analysis to decide number of signals

\[\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}}) \]

- RDC makes PDF of 3 observables \((t_{\text{ds}}, E_{\text{ds}}, t_{\text{us}})\) and implement in likelihood function

![Graphs](image)

(a) \(T_{\text{us}}\)
(b) \(T_{\text{ds}}\)
(c) \(E_{\text{ds}}\)

Figure 27: Projection of RDC PDF. The red and black line shows the accidental background and the signal PDF, respectively.
Dose in fiber

- Fiber at 1 sigma region (~2 cm)

Mass \[= 0.025 \text{[cm]} \times 0.025 \text{[cm]} \times 2.0 \text{[cm]} \times 1.05 \text{[g/cm}^3\text{]}\]

\[= 1.3e-6 \text{[kg]}\]

\[\Delta E/s \, = 0.6 \text{[MeV]} \times 500 \text{[kHz]} \times 0.68\]

\[= 2.04e5 \text{[MeV/s]}\]

\[= 2.04e5 \text{[MeV/s]} \times 1.0e6 \text{[eV/MeV]} \times 1.6e-19 \text{[J/eV]} \rightarrow 2.82e-3 \text{[J/day]}\]

\[= 3.26e-8 \text{[J/s]}\]

Dose \[= 3.26e-3 \text{[J/day]} / 1.3e-6 \text{[kg]}\]

\[= 2.5e-2 \text{[Gy/s]} \rightarrow 2.2e3 \text{[Gy/day]}\]
Radiation effect

- Peter reported degradation of light yield of plastic scintillator

- 48% light yield after 3.4e4 [Gy]

- US-RDC reaches 3.4e4 [Gy] after 16 days
Radiation effect

- Influence on attenuation length of fiber should be also considered

3HF fiber: Scintillating fiber with wavelength shifter for radiation hardness

Shortened attenuation length was observed even with small dose (~100 Gy)

Both optical fiber & scintillating fiber were characterized by:

\[
\frac{\lambda}{\lambda_0} = (0.80 \pm 0.01) - (0.144 \pm 0.007) \log_{10} D
\]

- \(\lambda/\lambda_0\): Ratio of attenuation length
- \(D\): Dose in krad
Radiation effect

- Attenuation length in RDC

muon hit fraction at central fiber

1 sigma ~ 2 cm

<table>
<thead>
<tr>
<th>hit rate (kHz)</th>
<th>170</th>
<th>68</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>dose (Gy/day)</td>
<td>2200</td>
<td>880</td>
<td>160</td>
</tr>
<tr>
<td>λ/λ_0 (1 day)</td>
<td>0.46</td>
<td>0.52</td>
<td>0.63</td>
</tr>
<tr>
<td>λ/λ_0 (16 day)</td>
<td>0.29</td>
<td>0.35</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Assuming $\lambda_0 = 20$ cm

Assuming fiber length ~20 cm, total light yield will be ~1/4 after 16 days

Assuming $\lambda_0 = 20$ cm

Light yield attenuation
Radiation effect

- Irradiation test with BCF-12 (planned to be used in RDC)

- 30 cm long fiber was uniformly irradiated with X-ray source (42 Gy/h)

![Graph showing pulse height of particles penetrating the middle of fiber over time](image)

- Current measured short component of attenuation length has large uncertainty (15-60 cm)

- Result is consistent with previous calculations if λ^0 (attenuation length before irradiation) is 35-40 cm
Alternative plan

- CVD diamond based RDC is considered
 - Discussing about design with E. Griesmayer (TU Wein, Cividec®)
 - 85μm thick, multiple single crystal CVD diamond

- Advantages:
 - Radiation tolerance (~MGy)
 - High detection efficiency (~100%) & Fast signal (~10ns)
 - Space limitation for photosensor can be solved
 - 2D continuous μ beam monitoring

- Difficulty
 - Readout of positron signal (3300 e-h pairs)
 - Manufacturing large area & thin mosaic detector (cost, mechanical stability)
 - Effect on μ beam should be carefully studied

- Possible readout: Charge sensitive amplifier (~5 mV/fC) + broadband amplifier (40dB~)

Gold : 500 nm

Diamond : 85 μm

Gold : 500 nm

Diamond mosaic detector @CERN n_TOF facility
