

MEG II実験液体キセノン検出器 実機MPPCのコミッショニング

Commissioning of all MPPCs for MEG II LXe detector

小川真治、他MEG IIコラボレーション @日本物理学会 2017年秋季大会 2017.09.13

Table of contents

1. Introduction

2. MPPC commissioning

3. Detector commissioning by γ-ray

LXe detector upgrade

MEG II

We have upgraded LXe detector for MEG II to significantly improve the performance.

We have replaced 216 2-inch PMTs on the γ-entrance face with 4092 12 × 12 mm² MPPCs.

- Better granularity
 - Better position resolution
- Better uniformity of scintillation readout
 - Better energy resolution
- Less material of the γ-entrance face
 - Better detection efficiency

Expected performance

• Significant improvement of all resolutions and efficiency are expected.

Detector performance for signal γ-ray

	MEG (measured)	MEG II (simulated)
Efficiency	65%	70%
Position	~5 mm	~2.5 mm
Energy	~2%	0.7 - 1.5%
Timing	67 ps	50 - 70 ps

Table of contents

1. Introduction

2. MPPC commissioning

3. Detector commissioning by γ-ray

Photo sensor commissioning

- Many photo sensors are used in LXe detector.
 - 4092 MPPCs + 668 PMTs.
- Performance of all photo sensors is being evaluated in LXe.
- Confirm reasonable MPPC PDE for LXe scintillation light in VUV.
 - PDE over 10% is needed for detector operation.
 - PDE ~20% has been measured for small number of sample MPPC.

Signal check for all photo-sensors

- Signal check has been done for all sensors in LXe.
 - With scintillation light from cosmic ray.
- Several dead and bad channels have been found.
 - Dead MPPC (9 ch) : Short circuit or bad connection of cable.
 - Dead PMT (9 ch) : Short circuit of HV cable.
 - Bad PMT (6 ch) : HV cable connection is not stable.

dead channel

bad channel

- Effect of dead MPPC is negligible.
- Dead PMT may affect energy resolution.
 - Under investigation.

Setup for photo-sensor calibration

- Two kinds of data have been taken for MPPC calibration.
 - LED run
 - Observe 1 p.e. peak to estimate gain.

WDark noise rate (@ LXe temp.) is too small to use it for calibration. (~5 Hz/mm²)

- Alpharun
 - Observe scintillation light from alpha source.
 - Compare measured # of p.e. with MC to estimate PDE.
- WaveDREAM (electronics developed for MEG II) has been used.
 - WaveDREAM has the functionality of waveform digitization, amplifier, trigger, HV supply for MPPC.
 - All MPPCs are grouped into 12 DAQ sets due to limited number of readout channels.

Noise in LED run

- Large noise level are being observed in LED run.
 - Seems to be due to GND treatment and switching power supply of electronics.
 - Needs hardware modification to solve it.
- MPPC 1p.e. peak cannot be seen due to this noise.
- Apply following treatment as a temporally solution.
 - Subtract coherent noise by using adjacent channel waveform.
 - Operate MPPCs at relatively large voltage (over voltage 7V)
 - Use short integration range (70 ns) to improve S/N.

→1 p.e. can be seen
except for noisy
channel of electronics
(6% of total).

Charge distribution from LED light

MPPC Gain

- MPPC gain has been estimated from 1p.e. peak.
- Reasonable gain has been confirmed.
 - 8 x 10⁵ @ over voltage ~7V
- Gain spread is 5% at same over voltage.

10

Alpha run

- Alpha event trigger by lateral PMT.
- Event selection
 - Separate alpha and others by pulse shape discrimination
 - Select events from each alpha source by position reconstruction.

charge / height

Reconstructed position (α event)

MPPC PDE

- MPPC PDE has been estimated.
 - PDE = (measured # of p.e.) / (expected # of photon in MC)
- Mean of PDE : 18%
 - Sufficiently large PDE (> 10%) has been confirmed.
 - Roughly consistent with previous measurement result (~20%).

Several effects which affect the measured PDE.

- crosstalk & afterpulse
- short charge integration range
- should be
- LXe light yield still improving

~10-30%

Summary of MPPC commissioning

- We have upgraded LXe detector for MEG II to significantly improve the performance.
- Commissioning of the detector is ongoing.
- Performance of all VUV-MPPCs is being evaluated.
 - Reasonable gain (~ 8 x 10⁵ at over voltage 7V) and sufficiently large PDE (~18%) have been confirmed for most MPPCs.

Table of contents

14

1. Introduction

2. MPPC commissioning

3. Detector commissioning by γ -ray

Detector commissioning by γ-ray

- We have started to see γ signal.
- 4.4MeV γ from AmBe source has been successfully observed.
 - From excited ${}^{12}_6C^*$ from ${}^9_4Be(\alpha,n){}^{12}_6C^*$
 - Hit the detector from inner face.
 - Detector performance is under investigation.
- Detector response will be checked by several γ-ray sources.
 - ~9MeV from thermal neutron capture
 - 4 & 12 MeV from ${}^{11}_{5}B(p,\gamma){}^{12}_{6}C$.
 - 18 MeV from ${}_{3}^{7}$ Li(p, γ) ${}_{4}^{8}$ Be.
- Pilot run of the detector will be performed with μ beam.

15

BACKUP

$\mu \rightarrow e\gamma$ search

- We search for charged **lepton flavor violating decay of muon**, μ->eγ.
- Prohibited in SM, detectable branching ratio in some BSM model
- Main background is the accidental background.
- Detector resolutions, especially energy resolution of γ-ray, are important to effectively distinguish the signal event from the accidental background.

MEG II experiment

Upgrade of MEG experiment

- μ⁺ stopping rate will be doubled
 - $\square 3 \times 10^7 \,\mu/s \rightarrow 7 \times 10^7 \,\mu/s$
- Detection efficiency will improve.
- Resolutions of all detectors will become half.
- New detector for background tagging will be introduced

Expected sensitivity: 4 × 10⁻¹⁴

 One order of magnitude better than MEG

Expected

Energy resolution vs. MPPC PDE

Position resolution vs. MPPC PDE

Energy resolution with Estimation error of PDE, QE Energy resolution (%) 0.9 0.8 0.7 0.6 all depth 0.5 depth <2cm 0.4 depth >2cm 0.3 0.2 No Error in Error in MPPC MPPC, PMT 0.1 error 0t

Motivation

- 検出器コミッショニングの1stepとして、光センサーの較正を実施。
- 検出器較正手法の確認、問題の洗い出しをする。
 - 検出器性能には光センサーの性能の正しい理解が必要。
 - ・ 光センサー特性(Gain, PDE)の個体差
 - ・ 二種類の光センサーのPDEの比

MPPC Gain

- MPPC gain has been estimated from 1p.e.peak.
- Reasonable gain has been confirmed.
 - 0.8M @ over voltage 7V

LXe light yield

e aa

Average MPPC waveform

MPPC PDE

Absolute PDE / QE

26