MEG II実験陽電子タイミングカウンターの較正方法の開発

Development of calibration methods for MEG II positron timing counter

Mitsutaka Nakao

(The University of Tokyo) On behalf of MEG II Collaboration

JPS Autumn Meeting 2017 (13aU33-1)

Charged Lepton Flavour Violation

Intro

- Inter-generational mixing have not been observed only for charged lepton sector.
- Too small branching ratio is predicted in the framework of the standard model + neutrino mass.

• Beyond the standard model (SUSY GUT etc) predicts that charged lepton should also mix at experimentally observable rate: $O(10^{-11}) \sim O(10^{-15})$

The discovery of cLFV is clear evidence for new physics

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **2**/20

MEG II Experiment

At Paul Scherrer Institut in Switzerland

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **3**/20

Intro

MEG II Detector

At Paul Scherrer Institut in Switzerland

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO ★ Page: 4/20

pTC pTC Status: Ready for Installation

 We have completed our detector and ready for installation into experimental site.

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO ★ Page: 5/20

pTC (1): Concept

Key Concept

Improve time resolution by averaging the signal time of multiple hits.

$$\sigma_{\rm all}(N_{\rm hit}) = \sqrt{\frac{\sigma_{\rm intrinsic}^2}{N_{\rm hit}} + \frac{\sigma_{\rm inter-pixel}^2}{N_{\rm hit}} + \sigma_{\rm MS}^2(N_{\rm hit}) + \sigma_{\rm const}^2}$$
Intrinsic resolution:

$$70 \sim 80 \text{ ps}$$
Multiple scattering:

$$\sim 4 \text{ ps at 9 hits}$$

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO ★ Page: 6/20

pTC (2): Pixel

- Upstream (256 pixels) + Downstream (256 pixels) = 512 pixels
- Fast plastic scintillator (BC422, 40 (50) x 120 x 5 mm³)
- Readout by 6 SiPMs* with series connection (in total 6144 SiPMs) at each of both sides.
- Time calibration accuracy among pixels: < 30 ps

*AdvanSiD, ASD-NUV3S-P High-Gain, 3x3 mm², 50x50 µm², V_{breakdown} ~ 24 V

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **7**/20

<u>Time Calibration</u>

- We have to know time offset of all 512 counters with the accuracy of 30 ps.
- Radiative Muon Decay(µ→eγvv) is used for absolute calibration for relative timing b/w e⁺ and gamma.
- We have two complementary methods to calibrate time offset b/w counters: laser-based method and track-based method.

Purpose of This Study

Time Calibration

- We have to know time offset of all 512 counters with the accuracy of 30 ps.
- Radiative Muon Decay(µ→eγvv) is used for absolute calibration for relative timing b/w e⁺ and gamma.
- We have two complementary methods to calibrate time offset b/w counters: laser-based method and track-based method.

What we did so far

- We performed beam test using ¼ of pTC under the MEG II beam.
- We checked the consistency b/w 2 calibration methods under a limited situation:
 - > Laser-based method: laser system was installed into 40 counters.
 - > Track-based method: w/o Drift Chamber.

Purpose of This Study

- Laser-based method: extend to full laser system.
- Track-based method: develop w/ Drift Chamber.

Laser-based Method: Concept

PLP-10 (Hamamatsu) is used as a light source.

Laser

- Time offset of each pixel is measured relative to laser-synchronized pulse.
- Calibration accuracy is estimated as 24 ps by testing all parts of laser calibration system.

MITSUTAKA NAKAO ★ Page: 10/20

Laser

Test Installation (1)

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **11**/20

Laser

Test Installation (2)

Laser Hut (Cavern)

Detector Hut

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **12**/20

Laser

Status & Event Display

in 2016

- A part of DS system was tested under the µ beam.
- Consistency w/ trackbased calibration was checked.

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **13**/20

Track Track-based Method: Concept

- Positron tracks from Michel decay ($\mu^+ \rightarrow e^+ \nu \nu$) are used for calibration.
 - 1. Calculate TOF values b/w adjacent counters.
 - 2. Define χ^2 as the difference b/w measured time and expected time.
 - 3. Minimize χ^2 using Millepede II.
 - 4. Find ΔT_{j} .

 $\chi^{2} = \sum_{i}^{N_{ev}} \sum_{j}^{N_{hit}} \underbrace{\left((T_{ij} - (T_{0i} + TOF_{ij} + \Delta T_{j})/\sigma)\right)^{2}}_{j}$

Millepede II www.desy.de/~kleinwrt/MP2 A software provided by DESY to solve the linear squares problems, such as detector alignment and calibration based on track fits.

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO **★** Page: **14**/20

Setup and Event Selection

MC Setup

Track

- Generated from μ^+ beam mixed at 7×10^7 .
- Time offset was set by randomly (:=Gaus(0, 100 ps)).
- Evaluate the performance with the difference b/w calculated time offset and original time offset.
- Number of events: 260k.

Track

Results

- First results w/ Drift Chamber.
- Bias depending on counter position was observed.
 - > TOF calculation in propagation.
 - Position dependence of statistics.
- Accuracy of $< \sim 22$ ps was achieved.
 - Needs further improvements.

 \downarrow Calculated time offset – true time offset / \uparrow its position dependence

JPS Autumn Meeting 2017 (13aU33-1)

Prospects

Key months Nov.	2017	 Pilot Run 2017 > pixelated Timing Counter, Liquid Xenon Gamma-ray Detector, Radiative Decay Counter will be installed. > ~7 weeks of combined detector DAQ is planned under the MEG II environment. > Laser-based and track-based calibration will be applied for full pTC. > Performance check of full pTC using µ beam is planned.
	•	 Installation of all detectors Maintenance after Pilot Run 2017. Including Drift Chamber.
Jul.	2018	 Engineering Run 6 months of performance data-taking. This run may evolve into physics run if things get ready. Inter-detector calibrations.
	•	Physics Run > Start searching for $\mu^+ \rightarrow e^+\gamma$ with unprecedented sensitivity.

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO ★ Page: 17/20

Consistency Check b/w 2 Methods

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO ***** Page: **18**/20

Prospects

JPS Autumn Meeting 2017 (13aU33-1)

MITSUTAKA NAKAO ★ Page: 19/20

Summary

- We have developed and constructed 2 complementary methods for time calibration.
- Laser-based method:
 - > extended to full laser system.
 - > ready for long-term and detail performance check from Nov. 2017.
- Track-based method:
 - first results w/ Drift Chamber was presented.
 - > accuracy of 22 ps was achieved, but have some bias.
 - > it needs improvements at each step of analysis chain.
- Beam test w/pTC, LXe and RDC is planned from Nov. 2017 (Pilot Run 2017).