MEG II実験輻射崩壊同定用 カウンターの実機製作及び性能評価

Construction & performance evaluation of a scintillation detector to identify BG gamma ray from radiative muon decay in MEG II experiment

中浦 正太、他MEG IIコラボレーション 東京大学 日本物理学会2016年春季大会 @ 東北学院大学(泉キャンパス)

- Charged Lepton Flavor Violation
- MEG II Experiment
- Radiative Decay Counter (RDC)

Detector Construction

- Timing counter part
- Calorimeter part

Detector test

- Charged Lepton Flavor Violation
- MEG II Experiment
- Radiative Decay Counter (RDC)

Detector Construction

- Timing counter part
- Calorimeter part

Detector test

Charged Lepton Flavor Violation

- $\mu \rightarrow e\gamma$ decay in the SM
 - standard model + neutrino oscillation
 - $B(\mu \rightarrow e\gamma) \sim O(10^{-54})$: too small to detect

- $\mu \rightarrow e\gamma$ decay in the new physics
- Enhanced branching ratio by TeV-scale particles •
- $B(\mu \rightarrow e\gamma)$ can be > $O(10^{-14})$: which can be reached!!

S.Antusch, E.Arganda, M.J.HerreroandA.M. Teixeira, J.HighEnergyPhys.11(2006)090

non-diagonal terms in the slepton mass matrix

Y.KunoandY.Okada, Rev.Mod.Phys.73, 151(2001)

MEG II Experiment

Signal Event: 2-body decay from a muon at rest

- e⁺ & γ: a monochromatic energy
- time-coincidently
- back to back

• High-precision measurement of $E_{e}, E_{\gamma}, T_{e\gamma}, \Theta_{e\gamma}$

Experimental Apparatus

• 7×10^7 stopping muons/sec

 μ^+

105.6

MeV

e⁺

- 800 litter liquid xenon gamma-ray detector
- A low mass stereo drift chamber
- A multi-tile scintillation timing counter
- New BG tagging detector

<u>MEG II Experiment</u>

The amount of background gamma-rays

Radiative Decay Counter (RDC)

Radiative Decay Counter (RDC)

- New detector
- Identify background gamma-rays actively

Mechanism

- High energy gamma-ray from the RMD
- Low momentum positron is coincidentally emitted

- Small detector
 - Upstream & Downstream
- Hit time:

Time coincidence with γ

Energy deposit: Distinguish RMD from Michel decay (only downstream)

<u>Radiative Decay Counter (RDC)</u>

Upstream RDC

- Made of 784 plastic scintillation fibers
 - thickness = 265 270 μm
 - small effect on $\mu^{\!+}\,\text{beam}$ transportation
- Separate µ⁺ from e⁺ using difference of energy deposit
- check the time coincidence between e⁺ (RDC) - γ (LXe)

The effect on the μ^{+} beam properties ?

Beam test with the mockup detector
A small influence on the beam spread

 σ_{x} · σ_{y} ~ 16 %

Simulation

- Stopping efficiency loss: 3 %
- Positron efficiency loss: 4 %

Radiative Decay Counter (RDC)

Downstream RDC

Timing counter part

- 12 plastic scintillator bars
- check the time coincidence between
 - e⁺ (RDC) γ (LXe)

Calorimeter part

- 76 LYSO crystals
- distinguish Radiative Decay

from Michel decay

Energy deposit

Radiative Decay Counter (RDC)

downstream RDC

Today's Topic

- Charged Lepton Flavor Violation
- MEG II Experiment
- Radiative Decay Counter (RDC)

Detector Construction

- Timing counter part
- Calorimeter part

Detector test

Timing Counter Part

12 scintillator bars

Construction

PCBs: compact readout circuits

MPPC in series

 \cdot Glued with conductive epoxy (CW2400)

Optical cement

1C

Aluminized mylar

- Light- shielding film (@ Tedlar)
- Good timing resolution (< 90 psec) for all counters

<u>Calorimeter Part</u>

11

Construction

 Good energy resolution (< 6 % at 1 MeV) for all crystals

The two parts were combined

Construction

12

Downstream RDC was constructed!!

- Charged Lepton Flavor Violation
- MEG II Experiment
- Radiative Decay Counter (RDC)

Detector Construction

- Timing counter part
- Calorimeter part

Detector test

<u>Goals of the test</u>

- Lab test of the constructed detector
 - All components in the constructed detector work ?
 - Calibration method of the each counter

- Energy calibration
 - · LYSO
 - : Self-Radiation (0.6 MeV)

- Plastic scinti.
 - : Landau-Peak
 - (0.9 MeV)

Setup

- Detector in the thermostat chamber
- 9 LYSO crystals & 1 plastic scintillator
- Trigger = Plastic scintillator & LYSO crystal

<u>Setup</u>

<u>Setup</u>

Setup

- Detector in the thermostat chamber
- 9 LYSO crystals & 1 plastic scintillator

<u>Calibration</u>

LYSO

- Self-radiation
- Photo-Peak at 0.9 & 1.8 MeV

Plastic scintillator

- DAQ with ⁹⁰Sr
- Landau Peak ~ 0.9 MeV

Sum energy

1

• Peak at 1.8 MeV

Expected energy

<u>Calibration</u>

LYSO

- Self-radiation
- Photo-Peak at 0.9 & 1.8 MeV

Plastic scintillator

- DAQ with ⁹⁰Sr
- Landau Peak ~ 0.9 MeV

Sum energy

1

• Peak at 1.8 MeV

Expected energy

<u>Calibration</u>

OK !

LYSO

- Self-radiation
- Photo-Peak at 0.9 & 1.8 MeV

Plastic scintillator

- DAQ with ⁹⁰Sr
- Landau Peak ~ 0.9 MeV

Sum energy

• Peak at 1.8 MeV

Expected energy

Conclusion

- DAQ with the two parts \
- Energy calibration

Summary & Prospect

<u>Summary</u>

- $\mu^+ \rightarrow e^+ \gamma$ search
 - Important probe to test the new physics
 - MEG II experiment aims at starting taking data in 2017
 - To further improve the sensitivity, the RDC will be newly introduced
- Construction of the downstream RDC
 - Timing counter & Calorimeter Parts were constructed
 - Their performances were separately checked

and they showed good resolutions

- Downstream Detector test
 - The two parts were combined and tested in the lab
 - The data with the two parts was successfully taken
 - The calibration method for each counter worked properly

18

- Beam Test in June
 - RMD detection with the constructed detector
- Upstream RDC
 - Pileup study, engineering design, and so on...
- We will improve the sensitivity of MEG II using the RDC and try to discover the cLFV, $\mu^+ \rightarrow e^+ \gamma$.

BACKUP SLIDES

Calorimeter Part

Self-radiation as calibration source

- Radioactive isotope ¹⁷⁶Lu
- The rate of the self-radiation was measured

with a prototype detector

• Result: 2.1 kHz (energy > 250keV)

- High enough as calibration source
- Pile up events
 - 2.1kHz × (pulse width~0.5 $\mu sec) \sim 1\%$
- LYSO was selected

Radiative Decay Counter (RDC)

Sensitivity

· 54 % of the total background gamma-rays will be identified

and the sensitivity will be improved by 28 %

Research Background

Radiative Decay Counter (RDC)

- Good resolutions (better than 90 psec) measured for all counters !
- · Acceptable position dependence of mean time

- Good resolutions (better than 90 psec) measured for all counters !
- Acceptable position dependence of mean time

<u>Simulation</u>

- Y-88
 - Dominant decay mode
 - Two gamma-rays of 0.9 & 1.8 $\rm MeV$
- Energy deposit

Correlation

Y-88