

MEG II実験用液体キセノン検出器の開発

Development of MEG II liquid xenon detector

澤田龍

東京大学素粒子物理国際研究センター 他MEG IIコラボレーション 日本物理学会・第70回年次大会 2015年3月21日 早稲田大学早稲田キャンパス

MEG II — Introduction

Signal

- MEG experiment to search for **LFV muon decay** $\mu^+ \rightarrow e^+\gamma$ with the highest sensitivity ~5×10⁻¹³, finished the data taking in 2013
 - The new result with the full statistics will be in this summer. Kaneko, 21aDF3
- An upgraded experiment MEG II with
 10 times higher sensitivity is prepared for starting in 2016. Uchiyama, 21aDF4
 - Pre-engeering run in this year.
 - Beam tuning
 - Mechanical integrity check
 - DAQ with beam and a part of detector.

- · μ^+ decay at rest
- 52.8MeV (half of M_{μ}) (E_{γ} , E_{e})
- Back-to-back ($\theta_{e_{\gamma}}, \phi_{e_{\gamma}}$)
- Timing coincidence $(T_{e_{\gamma}})$

- Accidental background
 - Michel decay e⁺ + random γ
 - Flat timing, angle

• E < 52.8 MeV

MEG II — apparatus

MEG II detector

- Muon beam
 - >2 times intense beam
- LXe detector
 - PMT → SiPM
- Drift chamber
 - Single volume
- e+ timing counter
 - Higher granularity
 Nishimura, 24aDL9
 Yoshida, 24aDL10
- Radiative decay counter
 - Active BG identification

Nakaura, 24aDL11

JPS 70th annual meeting

Development of MEG II liquid xenon detector

Liquid Xenon Detector

- The largest (900 litters) LXe detector
- 846 VUV sensitive PMTs directly detect scintillation photons (Q.E × C.E. ~ 16% for 175nm photons)
- Excellent energy, position and time resolutions
- Pileup-identification capable

	Nal	BGO	GSO	LSO	LXe
Effective atomic number	50	73	58	65	54
Density (g/cm ³)	3.7	7.1	6.7	7.4	3
Relative light output (%)	100	15	20-40	45-70	80
Decay time (nsec)	230	300	60	40	4.2, 22, 45

JPS 70th annual meeting

Development of MEG II liquid xenon detector

Expected performance : 1% energy resolution, ~2mm position resolution

MEG VUV MPPC

We developed **VUV-sensitive MPPC** with Hamamatsu *model : S10943-3186(X)*

- Sensitive to LXe scintillation light, λ ~175 nm
 - No protection layer, thinner insensitive layer
 - Optimized optical property of the surface
- Large sensitive area, 12×12 mm²
- 50 µm pixel pitch : ~47–56k pixels in each package
- Metal quench resister suitable for the low temperature use
- Four segments in each package
 - Possible to read each segment separately or to connect them outside of the package
- Thin quartz window for protection
 - Open space between the window and MPPCs to allow LXe enter the space
- Different gaps (0.5, 1 or 1.5 mm) to test possibility of discharge due to some conductive dusts floating in LXe.

Development of MEG II liquid xenon detector

Development history and status **MEG**

- Detector concept with VUV-SiPM, rough estimation of the performance improvement 2012
 - First test of VUV MPPC confirmed ~10% PDE for LXe scintillation
 - First large (12×12 mm²) sample confirmed ~17% PDE.
 - Slow pulse (~200 ns fall time) was observed 0
 - The problem was solved by introducing the series connection of sub-divided sensors (\rightarrow 30–60 ns fall time).
 - A new technology to suppress afterpulse.
 - Wider operation voltage rage $(1.5 \rightarrow 3 V)$
 - But the **PDE of this model was low**.
 - The **PDE recovered (~17%)** with a new sample. \bigcirc
 - Confirmed that the high rate background gamma is not an issue for the MPPC operation.
 - Detailed study of the energy resolution (up to ~1000 p.e.) shows clear worsening by the crosstalk.
 - **600 samples** (for mass test in LXe) were produced and tested at room temperature.
 - This talk Resolution test with a crosstalk suppressed model and higher p.e. statistics.
 - Ieki, 21pDK5 Mass test in LXe detector.
- (up to now) Development of the reconstruction algorithms and detailed simulation studies of the performance. Ogawa, 21pDK6

2014

2015

MPPC test in LXe with high p.e. statistics

MPPC test setup

MEG

6 MPPCs to cover alpha source

Alpha source at center of setup

Analysis and results

- Energy resolution is calculated from the difference of observed number of photons of one or two MPPCs.
- The improvement of the resolution continues down to 1.4% @ ~10k p.e.
 - The resolution is 1.6 times worse than the statistical term.

If the tendency continue up to the expected number of p.e. of 1.8×10⁵, the statistic term does not limit the energy resolution.

- 6 MPPCs surrounding an Am source (~5 MeV alpha source) attached on a tungsten wire
- The setup is submerged in LXe.
- " Total acceptance is ~34%
- Expected number of p.e. ~2.7 k per MPPC (assuming 20% PDE)

JPS 70th annual meeting

Crosstalk suppressed model

 New samples with cross-talk suppression were tested (this model will be used for the final detector).

- Wider overvoltage range $(3 \rightarrow 7 \text{ V})$
- Lower breakdown voltage by 12 V

W/o crosstalk sup. With crosstalk sup.

Results

- Larger gain (x 1.2)
- Much smaller crosstalk
- Almost same PDE as the previous model with the same voltage
 - Higher voltage with the higher voltage.

2p2s, 4s : different ways for connecting 4 MPPCs on a package (briefly explained in P13)

Resolution with Crosstalk suppressed model

The resolution is checked with using LEDs

Energy resolution v.s. phoelectron statistics

w/o crosstalk sup.

MEG

The raise of the resolution as the almost disappear with the cros

Development of MEG II

1.6

1.5

1.4

Detector preparation status

- The LXe detector is out from the beam area
- Most of inner and lateral PMTs were removed.
- The mass production of the final version of MPPC was started.
 - We will start the test of them at roomtemperature soon.
- MPPC support structure will be prepared, then we will put MPPCs.
- Design and production of various parts are done in parallel
 - Holders of the inner MPPCs and the lateral PMTs
 - Additional LXe refrigeratorImprovement of the design of feedthrough
 - Monitoring tools of the cryostat position

<u>LXe detecotor, present status</u>

0...

MEG

Deformation of Cryostat

Deformation of a thin window of the cryostat was found.

From a visual check with a fiber scope and a non-destructive check with X-ray, **the structure does not seem broken**. We will perform a pressure test to check the cryostat stay in a elastic region.

<u>Honeycombe image</u> <u>taken with X-ray</u>

Fiber scope and its image

JPS 70th annual meeting

Assembly PCB (before putting MPPCs)

- bias voltage
- * For prototype tests, 12x PCBs with 4-series connection and 12x PCBs with 2-parallel and 2-series connection are

Development of MEG II liquid xenon detector

13

MPPC connection schemes

MEG PCB Feedthrough

- High density co-axial like feedthrough
 - Six PCBs glues in slits on a flange
 - Co-axial like structure in the PCB
 - 72 ch per PCB
 - Wires are connected with MPPC connectors or directly soldered

PCB feedthrough for MPPC low-temperature tests

<u>PCB feedthrough and cable support</u>

Tested in the low-temperature MPPC mass-test

JPS 70th annual meeting

Development of MEG II liquid xenon detector

Detector Alignment MEG

Measurement and monitoring of the detector position.

Investigating feasibility of installing tools for monitoring deformation of the cryostat due to the weight of LXe (~3 tons) and low temperature (~165 K)

Between LXe outer dependence of the sensors of MEG II detector.

Laser tracker

- Put a marker on the cryostat.
- The measurement can be done any time (when beam is off).

Between LXe inner cryostat and Photon sensors

- **3D** Scanner
- Can be measured only before installation
- Supporting structure is rigid

<u>3D scanner (demonstrated in J</u>

Position of the s

Potentiometers

Between LXe inner cryostat and outer cryostat

- Potentiometers can be used probably.
- Online permanent monitoring

Development of MEG II liquid xenon detector

Summary and schedule

- The development of the VUV MPPC for LXe is finished.
 - Mass test of the (almost) final model is done (next talk).
 - The final model (with crosstalk suppression) was tested.
 - The energy resolution is improved because of the low crosstalk
 - Due to the wider operation voltage rage, the PDE becomes even higher (up to 27%)
- Various detector components are designed and tested.
- Schedule

MEG

- 2015
 - Mass test of the MPPCs for the final detector at room temperature
 - The final detector will be built
 - Test of a prototype electronics (256ch)
- 2016
 - Purification of LXe
 - DAQ test with the full electronics
 - Calibration with Am, LED, pi0 decays and so on.
 - To be ready for MEG II run