

MEGII 実験液体キセノンガンマ線検出器に 向けた再構成法の研究

Development of the event reconstruction method for MEG II liquid xenon detector

小川真治、他MEG IIコラボレーション @日本物理学会 2015年秋季大会

Table of contents

- 1. Introduction of LXe detector in MEG II.
- 2. Performance of LXe detector
- 3. Signal readout method comparison
- 4. Effect from the uncertainty of PDE
- 5. Summary

Upgrade of LXe detector for MEG II

- Replace PMT of γ-entrance face to MPPC
 - Photon collection efficiency becomes uniform

Imaging power improves

- Change PMT alignment of lateral face
 - Energy leak decreases

2. Performance of LXe detector

Performance estimation

- Performance improvement of LXe detector has already been confirmed by MC simulation.
 - "MEG Upgrade Proposal (arXiv:1301.7225)"
 - 日本物理学会第70年次大会 21pDK-6

- We carried out the performance estimation again.
 - Finalized design of the detector
 - Improved and optimized analysis

Detection efficiency

- **Detection efficiency for signal** *γ***-ray** in the detector acceptance.
 - Defined as the fraction of events whose energy deposit in LXe is over 48MeV
 - Design of the material before γ entrance face has been finalized.
- *Improvement by 9%* is observed from MEG I.
 - Thanks to the *reduced amount of material* in the entrance face,
 - Consistent with rough estimation in previous study (69%).

Event reconstruction

- *Waveform simulation* is performed for each MPPC and PMT.
 - **Based on the measured properties** of MPPC, PMT.
 - Crosstalk, after pulse, saturation of MPPC are simulated.
 - Same noise level with MEG I is assumed.
- Timing and # of p.e. of each MPPC, PMT are obtained by analyzing simulated waveform.
- Same reconstruction algorithm with MEG I, optimized to MEG II.
 - Position is reconstructed from the number of p.e. distribution on the entrance face.
 - *Energy* is reconstructed from the *summation of the photon for all channels*, taking into account of different coverage for each channel.
 - *Timing* is reconstructed by *fitting the time of each channel*, considering TOF and timewalk.

Resolution of LXe detector

- Estimated resolution for MEG II LXe detector.
- *Better resolution* than previous estimation.
 - Thanks to the analysis optimization

Resolution	MEG II (shown in last JPS)	MEG II (this study)	
u/v/w (mm)	2.7/ 2.3/ 3.7	2.2/2.0/2.3	
E _γ (w<2cm)	0.62%	0.65(4)%	
E _γ (w>2cm)	0.53%	0.49(2)%	
t _γ (ps)	71 (preliminary)	56(1)	

3. Signal readout method comparison

Signal readout method comparison

- *Series connection of MPPC* will be used.
 - **To avoid the long time constant** caused by the large area MPPC.
 - *Two candidates* for signal readout method
 - 2p2s (2parallel 2series) connection ٠
 - 4s (4series) connection
- Performance of the detector can be affected.
 - **Different S/N ratio** can affect position, energy, and timing resolution

connection

Different time constant of waveform can affect timing resolution and pileup.

Four independent MPPC chip on one package

@7V over voltage	2p2s connection	4s connection
gain	1.6×10 ⁶	0.8×10 ⁶
leading time	6.5ns	2ns
trailing time	49ns	33ns

X Definition of time constant: [0]*(exp(-t/leading time) - exp(-t/trainling time))

Signal readout method comparison

- Two kinds of noise level are assumed.
 - MEG I noise level, higher noise level.
- Same resolution for position and energy.
- Better timing resolution for 4s connection even under higher noise condition.
- We decided to use 4s connection.

MEG I noise level (0.3mV)	4s connection	2p2s connection	Higher noise level (1.0mV)	4s connection	2p2s connection
u/v/w (mm)	2.4/2.2/3.1	2.4/2.2/3.1	u/v/w (mm)	2.4/2.2/3.1	2.4/2.2/3.1
E _γ (σ of upper Edge)	0.67(2)%	0.68(2)%	E _γ (σ of upper Edge)	0.74(3)%	0.79(3)%
t _γ (ps)	60(1)	69(2)	t _γ (ps)	70(2)	75(2)

%These resolutions are estimated before analysis improvement.

4. Effect from the uncertainty of PDE

Uncertainty of PDE

- There is the uncertainty of PDE of MPPC.
 - Absolute PDE of MPPC is not well-known.
 - Broad distribution of PDE is observed in mass test.
 We may not be able to measure the PDE correctly for each MPPC in the final detector.
 - PDE may have an *angular dependence* which is not consistent with the expectation from the reflection at silicon surface.

- Effects of these uncertainty to the detector performance are estimated.
 - MC truth of #of p.e. and timing for each MPPC,PMT are used for simplicity.

Effect of absolute PDE

- Absolute PDE can be smaller than our previous assumption.
- We checked the degradation of resolution ٠ through statistical contribution at smaller PDE.
- We observed the degradation of resolution at very small PDE, but effect seems negligible in the range of our measured PDE.

Energy resolution

Position resolution

※Reconstructed from MC truth of # of p.e. and timing. Resolution from waveform analysis result is 55ps @ PDE 22%.

Effect of PDE ratio b/w MPPC and PMT

- We will use two kinds of sensors, MPPC and PMT.
- We have to estimate the ratio between PDE of MPPC and QE of PMT correctly for the energy reconstruction.
 - Energy is the summation of the number of the photon, and PDE (QE) is used for converting # of p.e. to # of photons.
 - Event by event fluctuation of the ratio of # of p.e. detected in MPPC and PMT can cause the degradation of energy resolution, if our assumption of the PDE ratio is wrong.
- Resolution becomes worse if assumed relative PDE ratio is wrong.
- We can estimate the true ratio by scanning assumed PDE in the analysis and finding the PDE at which energy resolution becomes best.

- Broad distribution of PDE is observed in the mass test of MPPC.
- PDE(QE) of each MPPC(PMT) will be estimated by using alpha source in the final detector. *Error of PDE(QE) estimation can cause the degradation of resolution*.
- Effect from this error to the detector resolution is estimated.
 - Error of both PMT and MPPC are taken into account.
 - Currently observed distribution is the upper limit of the estimation error.
 - Events are simulated with PDE variation and reconstructed by assuming constant
 PDE measured in mass test
 QE measured in MEG I

Effect of PDE estimation error

- We compared three cases.
 - case A: no estimation error for both MPPC and PMT
 - case B: no estimation error for MPPC, 16% estimation error for PMT
 - **case C**: 6.5% estimation error for MPPC, 16% estimation error for PMT
- Degradation of the resolution is observed for the energy resolution.
- Correct estimation of PDE seems important.

				(0)	L			
Resolution	case A	case B	case C	€) 1.4 uoitr 1.2	Red:all depth			
u/v/w (mm)	2.2/2.0/2.3	2.2/2.0/2.3	2.6/2.4/2.6	Hesol	Green:depth<	2cm	I	
E _γ (σ of upper Edge)	0.57(1)%	0.71(2)%	0.78(2)%	8.0 Euergy 6.0 E		•	Ĩ	
t _γ (ps)	39(1)	38(1)	40(1)	0.4				
	m MC truth of # of n	a and timing		- 0.2	case A	case B	case C	

Energy resolution

Reconstructed from MC truth of # of p.e. and timing.Resolution from waveform analysis result is 55ps @ PDE 22%.

Effect of angular dependence of PDE

- Effect of the angular dependence of PDE is estimated.
 - Angular dependence observed in the mass test is assumed in the simulation.
 - Information of angular dependence is not used in the reconstruction.
- Angular dependence changes the p.e. distribution on the inner face, and reconstructed depth is shifted to shallower.

18

Effect of angular dependence of PDE

- Position resolution
 - Small degradation for depth
- Timing resolution
 - Little effect to timing resolution
- Energy resolution
 - Decrease of the # of p.e. can be recovered by weighting # of p.e. detected on MPPC.
 - Same energy resolution can be obtained even with angular dependence.

Sum of # of p.e. (all MPPCs) blue: w/o angular dependence red: w/ angular dependence

Resolution	w/o angular dependence	w/ angular dependence
u/v/w (mm)	2.2/2.0/2.3	2.2/2.0/2.7
E _γ (σ of upper Edge)	0.57(1)%	0.58(2)%
t _γ (ps)	39(1)	41(1)

Reconstructed from MC truth of # of p.e. and timing.Resolution from waveform analysis result is 55ps @ PDE 22%.

How to deal with uncertainty of PDE

- Effect of absolute PDE
 - *Little effect* to performance.
- Effect of relative PDE ratio btw/ MPPC and PMT
 - Relative PDE ratio is important for energy reconstruction.
 - Can be estimated in the calibration run.
- Effect of PDE estimation error
 - Effect to the energy is not negligible.
 - PDE (QE) estimation for each MPPC and PMT is important.
- Effect of angular dependence of PDE
 - Reconstructed depth is shifted.
 - If we can know the angular dependence, this shift can be corrected.
 - A new measurement of angular dependence is being planned (see 27aSN-9).
 - *Method to know the angular dependence in the final detector* will be studied.

Summary

- Performance of MEG II LXe detector are estimated with realistic settings together with the several improvement and optimization of analysis.
- For signal readout, 4s connection will be used as it has better timing resolution.
- Effects from the uncertainty of PDE are estimated. Some of them are not negligible (especially shift of depth by angular dependence).
- How to decrease these effects are being studied.
 - We are planning another measurement to further investigate the PDE variation and angular dependence.

	MEG I	MEG II (in last JPS)	MEG II (this study)
efficiency	64.7%	not estimated	70.4%
u/v/w (mm)	5/5/6	2.7/2.3/3.7	2.2/2.0/2.3
E_{γ} (depth<2cm)	2.4%	0.9%	0.9%
E _γ (depth>2cm)	1.7%	0.9%	0.8%
t _γ (ps)	67	71 (preliminary)	56

0.7% contribution are assumed for MEG II (from unsolved difference between MC and real detector in MEG I)

Backup

abstract

- MEG実験のアップグレードであるMEG II実験では!LaTeX\$\mu \rightarrow e \gamma\$ 崩壊の探索感度を一桁向上させることを 目指している。
- MEG II実験では約4000個のMPPCを用いた液体キセノンガンマ線 検出器を使用する予定であり、位置分解能およびエネルギー分 解能の大幅な改善を見込んでいる。
- シミュレーションを用いた評価により物理目標達成に必要な分解 能がすでに確認されているが、さらなる性能向上を目指して再構 成法の改良および信号読み出し手法の最適化を行ってきた。
- 本講演では開発の現状および結果について報告する。

Layout of PMT on top/bottom face

- We observed that events near top/bottom face show worse energy resolution than other events.
- We tried to improve this, by modifying the layout of PMT on top/bottom face.
 - Number of PMT increases from 54 to 73 for each face.
 - PMT is placed staggered to improve photon collection uniformity.
- Improvement of energy resolution near top/bottom can be seen. (though it is not so clear)

New Lavou

black: old layout red:new layout 100010001000100010001000100045 50 55 60 65

Energy resolution vs. v

24

v (cm)

Detection Efficiency

Efficiency(%)	MEG I	MEG II
region 1	55.9	61.5 ± 1.4
region 2	55.0	60.3 ± 1.8
region 3	61.7	70.6 ± 1.2
region 4	56.3	62.3 ± 1.0
region 5	63.8	69.0 ± 0.6
region 6	66.5	71.9 ± 0.6
region 7	67.1	73.5 ± 0.6
region 8	67.9	72.9 ± 0.8
Averaged with area	64.2	70.0
Averaged with MEG I weight	64.7	70.4

Setting for MC

PDE	Gain	Crosstalk Prob.	Afterpulse Prob.
22%	0.8×10^{6}	15%	15%

Event by event fit	2p2s	4s
trailing time const.	49ns	33ns
leading time const.	6.5ns	<2ns

Waveform analysis

- In waveform analysis, charge (# of p.e.) and timing are calculated.
- Charge is calculated from fixed integration range.
- Constant fraction method is used for timing calculation (with 10% of pulse height threshold)

Waveform analysis for over range channel

28

- As PDE and gain increases, 35% of event have at least one channel in which pulse height becomes higher than dynamic range of waveform digitizer (950mV).
- We can avoid over range by decreasing amp gain but it leads to worse SN ratio, and it may result in worse resolution. (Quantitative estimation has not done yet.)
- However, appropriate waveform analysis to these over range channel is important for reconstruction as they have large # of p.e.

Waveform analysis for over range channel

- For these over range channel, TOT (Time Over Threshold) method are used for charge calculation in MEG I.
- Same method can be used for MEG II.
- Relation between TOT and charge are calculated beforehand.
- In this study, over range channels are not used for timing calculation.

29

Position reconstruction

• Position is reconstructed by fitting # of p.e. distribution of inner face with the solid angle from conversion point to each MPPCs.

$$\chi_{pos}^2 = \sum_{i} \left(\frac{N_{pe,i} - c \times \Omega_i(u, v, w)}{\sigma(N_{pe,i})} \right)^2$$

- Correction of shower direction is applied.
- We estimated position resolution by comparing with MC truth.

Global Correction

- Global correction for U is coming from average shower direction.
- Shower direction is not perpendicular to inner face in UR space.
- This is not the case for V, as inner face is perpendicular to in VR space.
- Global correction for W is basically a offset depending on FitRange.

Global Correction

Shower Correction

- Correction of event by event fluctuation of shower direction.
- If we use wider fit range, the effect from shower direction increases.
- Information of shower direction can be derived from difference of the fit result using different fit range.
- This correction is applied for UV.
- Dependence can be seen also for W, it is also corrected.

Shower Correction U

U before correction

-0.2-0.15-0.1-0.05 Ω 0.05 0.1 0.15 0.2

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

y axis: u(rec, iRegion) - u(MC)

x axis: u(rec, iRegion+1) - u(rec, iRegion)

Fitted value of par[1]=Mean

0.05

15 0.2

5-0.1-0.05 0

_0 2_0

Fitted value of par[1]=Mean

Fitted value of par[1]=Mean

34

iRegion=4

ահամանունունունո

0.8

0.6

0 0

-0.

W threshold optimization

Wthreshold[6] is decided from resolution for each fitting range.

with Global correction,

35

h2d2012 2

26

18.8

4.221

Entri

Mear

RMS

25

30

6

Energy reconstruction

- Energy is reconstructed by the summation of the number of photon (not photoelectron) from all channels taking into account of different coverage for each channel.
- Correction as a function of position is applied.

$$E_{\gamma} = F(u, v, w) \times C \times \sum_{i} (N_{pe,i} \times W_i)$$

Timing reconstruction

- Timing is reconstructed by fitting the time at each sensor, taking into account of TOF from the reconstructed conversion point.
- Error of the timing is a function of # of p.e.
- Calibrations of timewalk effect and calibration with position are done.

$$\chi^2_{time} = \sum_i \left(\frac{t_{hit,i} - t_{\gamma}}{\sigma(N_{pe,i})} \right)^2, t_{hit,i} := t_{pm,i} - t_{TOF,i} - t_{calib,i}$$

Position resolution

 Improvement of position resolution for shallow event from MEG I can be seen as we expected in proposal.

Energy resolution vs position

Energy resolution vs U

Timing resolution vs. position

Timing resolution vs U

Comparison with reconstruction from MCtruth ⁴¹

- We also tried reconstruction using MCtruth of # of p.e. and timing for each MPPC,PMT for comparison
 - Effect from crosstalk, after pulse, saturation, noise can be seen.
- Almost same resolution is obtained for position and energy.
- Different timing resolution is observed.
 - This can be coming from the error of timing in the waveform analysis.
 - There is the room for the improvement in the waveform analysis.

Resolution	MC truth	waveform analysis
u/v/w (mm)	2.2/2.0/2.3	2.3/2.0/2.4
E _γ (w<2cm)	0.70(4)%	0.65(4)%
E _γ (w>2cm)	0.45(2)%	0.49(2)%
t _γ (ps)	39 (1)	56 (1)

Wrong PDE ratio b/w MPPC and PMT

w (cm)

assumed PDE/true PDE=0.6

wrong ratio changes reco.E vs. w This change can be calibrated in the calibration run

Wrong PDE ratio b/w MPPC and PMT

Event by event fluctuation of detected # of p.e. for MPPC and PMT causes degradation of resolution with wrong PDE ratio.

x-axis: # of p.e.(MPPC) / # of p.e. (PMT)
taking into account different coverage
y-axis: reconstructed Energy
selecting events in abs(u)<5 && abs(v)<15 && 3<w<4</pre>

Reproducibility of PDE fluctuation

- **Case C**(PMT QE distribution 16% + MPPC PDE distribution 6.5%)
- Reproducibility of the result is confirmed with different seed value.

angular dependence

calculated from complex refractive index LXe: 1.61 Si: 0.8+2.2i AngleDependenceOfPDE

red: angular dependence measured in mass test blue: angular dependence measured in mass test (w/o LXe to Si reflection)

Additional angular dependence meas.

We plan to do two different type of tests.

- Quick setup, only 4 chips
- Confirm angular dependence

1 Today's topic

- Movable stage, 20~30 MPPCs.
- Check the angular dependence and MPPC by MPPC variation of PDE

Energy reconstruction (w/ angular dependence)⁴⁷

