Development status of low momentum e^+ calorimeter to identify BG gamma ray from radiative μ^+ decay in MEG II experiment

Ryoto Iwai, on behalf of MEG II collaboration
Contents

1. Introduction
2. Development status
3. Optical coupling test
4. Afterglow study
5. Assembling the calorimeter
6. Summary
1. Introduction

- Accidental BG is the most dominant in $\mu^+ \rightarrow e^+\gamma$ search

Signal

- $\mu^+ \rightarrow e^+\gamma$

Accidental BG

- Low momentum e^+
- $\mu^+ \rightarrow e^+\gamma$
- $\mu^+ \rightarrow e^+\nu_e\nu_\mu$

- ν_μ + ν_e

- Radiative Decay

- Michel Decay

- RDC (Radiative Decay Counter) in MEG II experiment

Upstream detector

- Scintillation fibre

LXe detector

Downstream detector

- Plastic scintillator + LYSO calorimeter

Measuring energy to separate Radiative Decay from Michel Decay
1. Introduction

- **LYSO (Lutetium-Yttrium Oxyorthosilicate) crystal for scintillator**
 - $2 \times 2 \times 2 \text{cm}^3$
 - Great resolution, large light output
 - Quick decay time to prevent piling up e^+ signals
 - Intrinsic radioactivity of Lu used for energy calibration

- **MPPC (Multi-Pixel Photon Counter) for reading out scintillation light**
 - Hamamatsu, S12572-025P
 - 25μm pixel pitch

Calorimeter behind the plastic scintillator (76 channels)

- e^+ energy 2~5MeV (200~600kHz)
- Desire resolution ~8% @1MeV

Typical energy ~600keV (2kHz)

- With reflector

Sensor (3×3mm²)
2. Development status

- R&D
 - RDC prototype test
 - MPPC & crystal selection
 - Holder & PCB design
 - LYSO mass test

Remaining tasks
- Optical coupling test
- Afterglow study

- Assembling and operation test
 - Assembling the calorimeter
 - Development of mover
 - Operation test with plastic scintillator

MEG II engineering run / data taking in 2016
3. Optical coupling test

- Performance evaluation of optical coupling between MPPC & LYSO crystal
 → It can make energy resolution better

<table>
<thead>
<tr>
<th>No material</th>
<th>Pad</th>
<th>Film</th>
<th>Grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPPC is directly attached</td>
<td>Saint Gobain BC-634A, t=1mm</td>
<td>TOMOE Gaw FW-205, t=20µm</td>
<td>Eljen technology EJ-550</td>
</tr>
</tbody>
</table>

- Experimental setup

 MPPC
 Press with spring pin
 LYSO with reflector

 → NIM amplifier
 → Waveform digitizer DRS (developed in PSI)
3. Optical coupling test

- Evaluation method
 → Energy resolution calculated from the charge distribution

- Charge and energy resolution at 1.17MeV
3. Optical coupling test

- Comparison of pad & grease
 → Over voltage = 3.56V

> The performance changed little with reduced grease
> Amount reduced by half in No.2,4,6
> The performance becomes same as pad at worst

- We will use grease for optical coupling
4. Afterglow study

- LYSO crystal has afterglow (AG)
 - Some excited e\(^-\) trapped in lattice defects
 - Emitted late \(\gamma\) becomes noise
 - Influence on current & energy resolution

- AG is caused by both room light & radiation
 - We want to check all crystals with radiation, but it takes long time

- So we checked all crystals with room light first
 - Then check the correlation with radiation
4. Afterglow study

- **Room light AG**
 - Current of MPPC was measured
 - Over voltage = 4.02V
 - Large individual difference was found
 (~5μA without AG)

 All LYSO crystals exposed to room light over 24h

- **Current monitor with 90Sr (~200kHz)**
 - Temperature was constant (26.0°C)
 - Over voltage = 3.56V
 - Current increased slowly (~30μA in 200days)

Current was measured in every 10sec
5. Assembling the calorimeter

- Holder design

- LYSO crystal with reflector

- 22cm

- Steel blocks for dummy channels

- 200μm Al plate

- 0.8mm Delrin®

- Light shielding

- e⁺ incoming direction

- Tighten with screw
5. Assembling the calorimeter

- PCB design
 → MPPC are pressed with spring

- No dead channel was found in PCB
 → LYSO intrinsic radioactivity was observed in all channels
6. Summary

- Optical coupling between MPPC and LYSO crystal was optimized
 - We will use grease for optical coupling

- Afterglow of LYSO crystal was studied
 - All LYSO crystals were measured with room light
 - Increased current was observed with radiation
 - We should check correlation with AG from radiation and estimate effect on resolution

- Construction of the calorimeter has just started
 - No dead channel were found in PCB
 - We should combine plastic scintillator and test
THE END
BACK UP
Michel Decay & Radiative Muon Decay

* e⁺ energy deposit from simulation

Radiative Muon Decay

Michel Decay

RMD (Eγ > 48 MeV)
MPPC selection

- **Advantage of using 25μm pixel pitch compare to 50μm**
 - Crosstalk becomes smaller due to lower gain
 - Saturation can be minimized
 - Current also becomes smaller

- **50μm pixel pitch is superior in S/N ration**
 - Signal can be seen more clearly
 - But we can obtain desire resolution with 25μm pixel pitch
Reflector design

* Enhanced Specular Reflector Film (ESR)

→ 65μm thickness
Charge vs Resolution

![Graph showing the relationship between Charge (C) and Resolution (%). The graph compares Pad (red stars) and Grease (green stars).]
Temperature & current

![Graph showing charge vs. temperature and current for Pad and Grease samples.](image)
Afterglow mechanism

Reference

- LYSO crystal structure
 → O₅ has the lowest formation energy
 → Oxygen vacancies can be created during crystal growth due to the low oxygen content in the furnace atmosphere

- Emission spectrum & Thermoluminescence
 → Afterglow depends on its growth atmosphere
 → Strong peak around 340K
Room light afterglow recheck

- Red & Blue plot shows another measurement results

→ Room light exposed over 48 hours after light shielding
Afterglow study
Afterglow study

- We also checked other 2 crystals only for ~60h
 - Over voltage = 3.56V

- Effect on energy resolution with rising of 50μA
 - Statistical contribution from number of AG photoelectrons was calculated
 - Single waveform contains $N_{\text{all}} = N_{\text{sig}} + N_{\text{AG}}$

 Resolution = \[\frac{\sigma_{\text{all}}}{N_{\text{sig}}}\]
 \[= \frac{\sqrt{N_{\text{sig}} + N_{\text{AG}}}}{N_{\text{sig}}}\]
 \[= \frac{1}{\sqrt{N_{\text{sig}}}} + \text{terms with } N_{\text{AG}}\]

 Assuming Poisson distribution
 \[\sigma_{\text{all}}^2 = \sigma_{\text{sig}}^2 + \sigma_{\text{AG}}^2\]
 \[\sigma_{\text{sig}} = \sqrt{N_{\text{sig}}}\]
 \[\sigma_{\text{AG}} = \sqrt{N_{\text{AG}}}\]

 Measured N_{sig} & N_{AG}
 \[N_{\text{AG}} \approx 401\]
 \[N_{\text{sig}} \approx 3090\]

 This additional terms ~0.2%
Energy resolution calculation

- How much resolution gets worse if p.e. from AG are increased
- 2 assumptions

1. Single waveform contains N_{all} photoelectrons

\[N_{\text{all}} = N_{\text{sig}} + N_{\text{AG}} \]

2. N_{AG} shifts mean value in charge distribution

Resolution = \[\frac{\sigma_{\text{all}}}{N_{\text{all}} - N_{\text{AG}}} \]

= \[\frac{\sigma_{\text{all}}}{N_{\text{sig}}} \]
Energy resolution calculation

Resolution = \frac{\sigma_{all}}{N_{\text{sig}}}
= \frac{\sqrt{N_{\text{sig}} + N_{\text{AG}}}}{N_{\text{sig}}}
= \frac{1}{\sqrt{N_{\text{sig}}}} \sqrt{1 + \frac{N_{\text{AG}}}{N_{\text{sig}}}}
= \frac{1}{\sqrt{N_{\text{sig}}}} + \text{terms with } N_{\text{AG}}

N_{\text{all}} = N_{\text{sig}} + N_{\text{AG}}
\sigma_{\text{all}}^2 = \sigma_{\text{sig}}^2 + \sigma_{\text{AG}}^2

If it follows a Poisson distribution…

\sigma_{\text{sig}} = \sqrt{N_{\text{sig}}} \quad \sigma_{\text{AG}} = \sqrt{N_{\text{AG}}}

\Rightarrow \sigma_{\text{all}} = \sqrt{N_{\text{sig}} + N_{\text{AG}}}

We can estimate additional terms from N_{sig} & N_{AG}
Energy resolution calculation

- Consider waveform of 1.17MeV Co60 peak

\[
N_{AG} = \frac{\text{Current}[c/s] \times \text{Wavelength}[s]}{\text{Gain of MPPC} \times e[c]}
\]

\[
N_{\text{sig}} = N_{\text{all}} - N_{AG} = \frac{\text{Charge at 1MeV}}{\text{Charge at 1p.e.}} - N_{AG}
\]

- If current is increased 50\(\mu\)A...

\[
N_{AG} \approx 401
\]

\[
N_{\text{sig}} \approx 3491 - 401 = 3090
\]

Resolution gets worse \(\sim 0.2\%\)
Pictures of PCB
Springstand