MEG II実験のための背景ガンマ線同定用 陽電子カロリーメーターの実機製作と その評価

Development status of low momentum e⁺calorimeter to identify BG gamma ray from radiative μ^+ decay in MEG II experiment

岩井遼斗(東京大学) 他、MEG IIコラボレーション Ryoto Iwai, on behalf of MEG II collaboration Contents 1. Introduction 2. Development status 3. Optical coupling test 4. Afterglow study **5. Assembling the calorimeter** 6. Summary

1. Introduction

* Accidental BG is the most dominant in $\mu^+ \rightarrow e^+\gamma$ search

* RDC (Radiative Decay Counter) in MEG II experiment

1. Introduction

Calorimeter behind the plastic scintillator(76 channels)

e⁺ energy 2~5MeV(200~600kHz) Desire resolution ~8% @1MeV

- LYSO(Lutetium-Yttrium Oxyorthosilicate) crystal for scintillator
 - \rightarrow 2 × 2 × 2cm³
 - → Great resolution, large light output
 - → Quick decay time to prevent piling up e⁺ signals
 - → Intrinsic radioactivity of Lu used for energy calibration

- MPPC(Multi-Pixel Photon Counter) for reading out scintillation light
 - → Hamamatsu, S12572-025P
 - → 25µm pixel pitch

2. Development status

* R&D

- → RDC prototype test
- → MPPC & crystal selection
- → Holder & PCB design
- → LYSO mass test

Remaining tasks

- → Optical coupling test
- → <u>Afterglow study</u>

- * Assembling and operation test
 - → Assembling the calorimeter
 - → Development of mover
 - → Operation test with plastic scintillator

✦

MEG II engineering run / data taking in 2016

3. Optical coupling test

- * Performance evaluation of optical coupling between MPPC & LYSO crystal
 - → It can make energy resolution better

Experimental setup

- → NIM amplifier
- → Waveform digitizer DRS (developed in PSI)

3. Optical coupling test

* Evaluation method

→ Energy resolution calculated from the charge distribution

Charge and energy resolution at 1.17MeV

3. Optical coupling test

Comparison of pad & grease

→ Over voltage = 3.56V

We will use grease for optical coupling

4. Afterglow study

- LYSO crystal has afterglow(AG)
 - → Some excited e⁻ trapped in lattice defects
 - \rightarrow Emitted late γ becomes noise
 - → Influence on current & energy resolution
- * AG is caused by both room light & radiation
 - → We want to check all crystals with radiation, but it takes long time
- So we checked all crystals with room light first
 - → Then check the correlation with radiation

4. Afterglow study

- Room light AG
 - → Current of MPPC was measured
 - → Over voltage = 4.02V
 - → Large individual difference was found (~5µA without AG)

All LYSO crystals exposed to room light over 24h

- Current monitor with ⁹⁰Sr (~200kHz)
 - → Temperature was constant (26.0°C)
 - \rightarrow Over voltage = 3.56V
 - → Current increased slowly (~30µA in 200days)
 - Current was measured in every 10sec

5. Assembling the calorimeter

- * PCB design
 - → MPPC are pressed with spring

- No dead channel was found in PCB
 - → LYSO intrinsic radioactivity was obserbed in all channels

Spring stand for quick rest

6. Summary

Optical coupling between MPPC and LYSO crystal was optimized

→ We will use grease for optical coupling

Afterglow of LYSO crystal was studied

- → All LYSO crystals were measured with room light
- → Increased current was observed with radiation
- → We should check correlation with AG from radiation and estimate effect on resolution

Construction of the calorimeter has just started

- → No dead channel were found in PCB
- → We should combine plastic scintillator and test

BACK UP

Michel Decay & Radiative Muon Decay

* e⁺ energy deposit from simulation

MPPC selection

* Advantage of using 25µm pixel pitch compare to 50µm

- → Crosstalk becomes smaller due to lower gain
- → Saturation can be minimized
- → Current also becomes smaller

* 50µm pixel pitch is superior in S/N ration

- → Signal can be seen more clearly
- → But we can obtain desire resolution with 25µm pixel pitch

Reflector design

* Enhanced Specular Reflector Film (ESR)

\rightarrow 65µm thickness

Charge vs Resolution

Temperature & current

Afterglow mechanism

Reference

S. Blahuta et al.. 2011. Defects identification and effects of annealing on Lu2(1-x)Y2xSi05 (LYSO) single crystals for scintillation application,. Materials,4, 1224

- LYSO crystal structure
 - \rightarrow O₅ has the lowest formation energy
 - → Oxygen vacancies can be created during crystal growth due to the low oxygen content in the furnace atmosphere
- Emission spectrum & Thermoluminescence
 - → Afterglow depends on its growth atmosphere
 - → Strong peak around 340K

Room light afterglow recheck

Red & Blue plot shows another measurement results

→ Room light exposed over 48hours after light sheilding

Afterglow study

Afterglow study

We also checked other 2 crystals only for ~60h

Effect on energy resolution with rising of 50µA

- → Statistical contribution from number of AG photoelectrons was calculated
- → Single waveform contains $N_{\rm all} = N_{\rm sig} + N_{\rm AG}$

Energy resolution calculation

- How much resolution gets worse if p.e. from AG are increased
- * 2 assumptions
 - 1. Single waveform contains Nall photoelectons

2. N_{AG} shifts mean value in charge distribution

Energy resolution calculation

Consider waveform of 1.17MeV Co60 peak

Resolution gets worse ~0.2%

If current is increased 50µA...

 $N_{\rm AG} \simeq 401$

 $N_{\rm sig} \simeq 3491 - 401$ = 3090

Pictures of PCB

28

Springstand

