MEG II 実験の現状とその展望

岩本敏幸、他MEG II Collaboration 東京大学素粒子物理国際研究センター 2014年9月18日

日本物理学会2014年秋季大会 佐賀大学 本庄キャンパス

1

Lepton Flavor Violation

- The Standard Model is completed after the discovery of the Higgs boson.
- However, many parameters and issues remain in the SM.
- Is there new physics beyond the SM?
- No discovery of new physics from the LHC results (yet).
- Lepton flavor violation
 - Neutrino : Neutrino oscillation is a lepton flavor violating process.
 - Charged lepton : No LFV has been observed yet. Why?

In SM with neutrino mass, BR($\mu \rightarrow e\gamma$)~10⁻⁵⁴ (No background from SM!)

Observation of $\mu{\rightarrow}e\gamma$ decay is a clear sign of new physics beyond SM

Many new physics such as SUSY-GUT, SUSY-seesaw, Extra Dimensions etc. predict large BR($\mu \rightarrow e\gamma$)

Search for new physics with ultimate sensitivity and with not very large experiment quickly!

Muon LFV

•Once LFV process is discovered, other inputs will also be important to know new physics

$\mu \rightarrow e\gamma signal \& background$

Signal

Simple two body decay

 $E_{\gamma}, E_e \simeq 52.8 \text{MeV}$ $\Theta_{e\gamma} = 180^\circ, T_{\gamma} = T_e$ Radiative muon decay background

- if two neutrinos have low energy and e+ and γ are emitted back-toback
- timing coincident, can be used for timing calibration

Accidental background

- Usual muon decay Michel e⁺
 + random γ from RMD/
 Annihilation in flight (AIF)
- dominant for us
- •To get good sensitivity, all the resolutions should be good!

 $N_{acc} \propto R_{\mu}^2 x \Delta E_{Y}^2 x \Delta E_e x \Delta \Theta_{eY}^2 x \Delta t_{eY} x T$

- MEG detector worked fine, and improved the previous best limit.
- However, sensitivity improvement is being limited by accidental background

Upgrade idea

- LXe detector Single Volume Tracker **Small Photon Cylindrical Drift Chamber** Sensors **Radiative decay counter Pixelated Timing Counter**
- We know possible improvement items
 - PSI beam rate can be increased up to 7x107µ+/s
 - Important to improve detector performance!
 - Segmented DC -> homogeneous DC with long wires to get more # hits and to reduce material
 - XEC inner face 2" PMTs -> smaller photo sensors (MPPCs)
 - TC -> pixelated scintillation counters
 - Additional radiative muon decay tagging
- These can be quickly upgraded within reasonable time with our experience

Liquid Xenon Detector

Lin<mark>ear sc</mark>ale Log scale _og scale

Wider incident face, different PMT angle at lateral face

Present

Upgraded

Liquid Xenon Detector

- 600 large area (12x12mm) VUV sensitive MPPCs delivered
- Basic characteristic measurements at room T finished!
- Several MPPCs tested at LXe T., and all MPPCs will be tested at LXe T. with prototype

小川真治 **19pSG3**

家城佳 19pSG2

- Cross talk suppress technique will be applied to our MPPCs this year. Mass production for the final detector will follow.
- Detector construction next year.

PCB and 16 MPPCs (64 chips)

8 readout ch.×8 relay settings = 64

pixelated Timing Counter

present

- 2x array of 15 scintillating bars readout by PMTs
- 40x40x800mm³ scintillator
- Mean resolution ~ 65ps

~300 counters × 2 (upstream, downstream side)

upgrade

- Higher granularity 2x256 of small scintillator plates(90x(40-50)x5mm³) readout by SiPM
- Resolution down to 30ps
 - High single pixel resolution
 - Further improvement with multi-counter hits
- Thin scintillator for less multiple scattering
- Less pile-up also with higher beam intensity

pTC Schedule

- July 2014 at Frascati
 - AdvanSiD SiPM (unfortunately this time bad timing resolution of these SiPMs. Will be fixed for Oct. 2014 beam test)
 - 12cm scintillator
 - 6 SiPMs in series connection
 - PCBs used as structure

西村美紀 19pSG4

- Oct.-Nov. 2014 at PSI
 - SiPM final configuration (6500 SiPMs are already ordered to AdvanSiD)
 - WaveDREAM readout
 - High rate environment test
- Study on calibration methods
- Start counter construction, and ready in 2015

Cylindrical Drift Chamber

- Single volume gaseous detector
- Stereo wires along z
- Finer granularity, better resolution
- Larger acceptance DC + TC
- Resolution check, aging test performed, detector construction by 2015 summer

Momentum ~130 keV (350 keV) Angular ~5 mrad ; ~5mrad (9mrad ; 11mrad) Vertex ~1.2 mm ; ~0.7 mm (1.8 mm ; 1.1 mm) DC-TC matching eff. ~ 90 % (41%)

Electronics

- higher granularity -> more # channels
 - LXe 846 -> 4722
 - DC 1730 -> 2760
 - pTC 60 -> ~1000
- DRS4 VME board-> WaveDREAM
 - waveform digitizer
 - higher density
 - bias voltage supply, amplifier for SiPM, and simple trigger are integrated
- Test boards will be ready soon, and will be used in pTC beam test this November
- Mass production in next year

16 WaveDREAM2 boards

Radiative Decay Counter

• Tagging radiative muon decay events with \sim 50MeV γ (low energy e is emitted ~ 4MeV)

中浦正太 19pSG1

Timing counter

Magnetic field measurement

- 2006 magnetic field was measured with 0.2% precision (sensor position calibration ~800µm) ~ 150keV momentum resolution
- Momentum resolution in MEG II ~ 130keV, need to reduce the uncertainty of the magnetic field
- In July and August 2014, magnetic field measurements were performed with a new measurement machine which sensor position is more precisely calibrated (<300µm). If this new field map improves the momentum resolution of the current MEG data, this will be applied to them, too.

R: 20 mm step φ: 30 deg step

Summary

- The MEG experiment improved the BR($\mu_3 \rightarrow e\gamma$) upper limit this year, 5.7x10 at 90% C.L.
- MEG physics run finished in Aug. 2013, and the analysis is ongoing.
- MEG upgrade proposal is approved by PSI in 2013. R&D for detector upgrade is ongoing, and the detector construction will be carried out next year.
- The target sensitivity is 5x10⁻¹⁴, and data taking for three years starting from 2016.

MEG limitation

MEG Experiment

- 1999 Proposal to PSI
- 2008–2013 Physics run
- The latest result based on 2009–2011 data set upper limit of BR($\mu \rightarrow e\gamma$) < 5.7x10⁻¹³ @90%CL
- 2012-2013 data will double the statistics, and the new result with our full statistics would be published at winter conferences
- MEG Collaborator ~ 60 physicists from Japan, Italy, Switzerland, Russia, and USA

1.3MW high intensity proton accelerator World most intense DC μ+ beam >1x10⁸ μ+/s

MEG II Status

- 2013/Jan- Upgrade proposal presented, and accepted by PSI (arXiv: 1301.7225)
- 2013-2015 Design & Construction
- 2015- Engineering run
- 2016 2018 Physics run

PDF parameters	Present MEG	Upgrade MEG II
e+ energy (keV)	306(core)	130
$e + \theta(mrad)$	9.4	5.3
$e + \phi(mrad)$	8.7	3.7
e+ vertex(mm)Z/Y(core)	2.4/1.2	1.6/0.7
γ energy(%)(w<2cm)/ (w>2cm)	2.4/1.7	1.1/1.0
γ position (mm)u/v/w	5/5/6	2.6/2.2/5
γ-e+ timing (ps)	122	84
Efficiency		
trigger	≂99	≂99
γ	63	69
e+	40	88

Upgrade Concept

- What can be improved?
 - Higher muon beam rate
 - 3->7x10 µ /s
 - Larger acceptance
 - Better resolutions
 - Active background suppression
 - Radiative muon decay tagging detector

PSI Accelerator (muon beam rate)

- PSI also has a plan to upgrade the accelerator
 - Mainly for Mu3e experiment
- MEG experiment doesn't require the accelerator upgrade
 - We can quickly start whenever the detector upgrade finishes
 - $3.0 \times 10^7 \Rightarrow 7.0 \times 10^7 \,\mu/s$

stopped at the target are possible now

Drift chamber

- Single volume gaseous detector
- Stereo wires along z
- Finer granularity, better resolution
- Larger acceptance DC + TC

Challenging

Long wires : ~200cm High rate environment

Large number of hits

DC R&D Status

- Many prototypes
 - Single hit resolution
 - Aging
 - Mechanical design & optimize the length etc.

Single full-length wire prototype

New Pixelated Timing Counter

• Array of ultra-fast plastic scintillator counters

Beam tests @ Frascati

- Single counter₃ resolution ~70ps (90x40x5mm, BC418)
- Ultimate resolution with multi-counter hit
 - Reduce electronics, calibration contribution, and counter resolution
 - Eight counters(90x40x5mm², BC418) with MPPC and six counters with AdvanSiD are prepared (still to be optimized)
- Beam test condition @ Frascati
 - repetition rate : 50Hz
 - Bunch width : 10ns
 - Positron 48MeV
- Resolution improvement as a function of number of counters is confirmed!
 - Measured resolution 30~35ps

LXe Y-ray detector

- Small photon sensors (12x12mm MPPC) at γ -ray incident face
 - ~4000ch MPPCs instead of 216 PMTs
 - Better position, energy resolutions at shallow events
 - Better identification of pile-up events
- Wider incident face, Change PMT angle at lateral face
 - To reduce shower leakage, better uniformity

Computer Graphic

MPPC R&D Status

- MPPC development in cooperation with Hamamatsu
- Achieved
 - UV(~175nm) sensitivity: PDE >15%
 - Large area (12x12mm²), single photoelectron peak resolved
- Remaining issues
 - To reduce long tail (~200ns)

Series or Parallel connection?

- Original plan was a single sensor with 12x12mm² large area, but it had a long tail ~ 200ns
- To reduce a sensor capacitance, one sensor can be segmented into sectors, which will be connected in series.
- To simulate the concept works or not, 4 independent 6x6mm samples are connected differently, and the waveforms are compared.
- Succeeded in obtaining shorter tail (30-50ns)!

DAQ/Trigger

- More channels, higher rate
 - XEC MPPC (inner face) : ~4000
 - XEC PMT (other faces) : 630
 - pTC MPPC : ~1200
 - DC : 2760 (1GHz bandwidth)
- WaveDREAM
 - Higher density, compact
 - Waveform digitizer(DRS) +bias voltage supply +amplifier+simple trigger

Background tagging detectors

- Tagging radiative muon decay events with ~50MeV γ (low energy e⁺ is emitted ~ 4MeV)
- Plastic scintillator + crystal with MPPC readout
- Beam test was performed at the end of MEG beam time in August with prototype

Likelihood analysis

• Fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering

New DC parameters

- 90% He + 10% Iso-Butane (iC_4H_{10})
- Spatial resolution estimate ~130µm
- Momentum resolution ~ 130keV
- Angular resolution ~5mrad
- DC-TC matching eff. ~ 90%
- 10layers, square projective cells of 0.7cm, stereo angle of ~8 deg with respect to Z (z resolution ~ 7 times the transverse resolution)
- 25 and 40 μ m anode and field wires
- Total length 180-190cm, outer radium 29.2cm, 1380 anode/7500 field wires
- Positron hit rate density by MC simulation
 - Michel e+ generated over 4π at 1x10 µstop/s, max rate 45kHz/cm2
 - At 1x10 gain and 7x10 µstop/s, the maximum current is 6nA/cm(innermost wire), 3years of running, the maximum integrated charge is 0.4C/cm
 - Free radical polymerization is regarded as the dominating mechanism of wire chamber aging
- Pisa aging up to 0.5C/cm

