新型半導体光検出器PPDの液体キセノン中での基礎特性

東京大学素粒子物理国際研究センター、高エ研A

岩本敏幸、内山雄祐、大谷航、金子大輔、澤田龍、千葉哲平、名取寛顕 A、西口創A、春山富義A、白雪、藤井祐樹、真木晶弘A、三原智A、森俊則 日本物理学会第67回年次大会 関西学院大学 西宮上ヶ原キャンパス

Introduction

- MEG experiment utilizes PMTs in order to detect scintillation light in liquid xenon gamma-ray calorimeter.
 PMTs are one of the possible candidates for MEG detector upgrade.
- R&D of Pixelated Photon Detector (PPD) have been actively performed as a new novel silicon photon detector.
- Can the PPD be a candidate for MEG detector upgrade?
- Let's check basic characteristics of the PPD in liquid xenon, and develop new PPDs suitable for liquid xenon.

MEG experiment Liquid xenon gamma-ray detector

Performance in 2010 (for 52.8MeV γ)

- Energy : 1.9% (depth>2cm, 64%), 2.4% (depth<2cm, 36%)
- Position : 5 mm
- Timing : 67 psec
- Efficiency 59%

- Liquid xenon 900L
- 846 x 2" PMT (Hamamatsu R9288)
 - Submerged in liquid xenon (T=165K, p<3atm)
 - Sensitive to VUV, $\lambda = 175$ nm
 - QE~15% at 165K
- Performance evaluation in 2011 (金子大輔 25pFA9)
- MEG detector upgrade is seriously discussed among MEG collaborator to reach ultimate sensitivity (澤田龍 25pFA10)

Many variants

- SiPM, MPPC (Hamamatsu), gAPD, MRS-APD,...
- Possible replacement of photomultiplier technology
- Pixelated Photon Detector (PPD)
 - solid state photon detector
 - multi-pixelated Geiger-mode APDs
 - possible to detect single photoelectron.
- MPPC is one of PPDs produced by Hamamatsu.
 - SiPM, Geiger Mode APD,...
 - pixel size ~10-100µm, active area ~ 1-several mm
 - 1 pixel = 1 photon at $N_{p.e.} << N_{pixel}$
 - Sum of pixel outputs is proportional to number of impinging photons

PPD for MEG?

- Merits
 - Insensitive to magnetic field
 - High granularity
 - less material before liquid xenon active region
 - single photon sensitive
 - low bias voltage (<100V)

- Demerits
 - Less sensitive to VUV
 - protection coating (epoxy resin/silicon rubber)
 - Highly doped layer(p⁺⁺) with no electric field (Absorption length in Si for VUV photon =5nm)
 - Anti-Reflecting(AR) coating is not optimized to 175nm
 - Current largest sensor (~3x3mm²) is still too small for MEG, at least 10x10mm²
 - radiation hardness
 - after pulse, cross talk

PPD samples

60

50

40

PDE [%] 30

- Several samples of PPDs provided by Hamamatsu
 - Commercial one, S10362-33-100C(sample1)
 - Remove protection coating + Optimize anti-reflection(AR) coating to suppress reflection (2,3)
 - Thinner p⁺⁺ layer (**4,5,6**)
- Let's measure the basic properties!

ARコート調整によるPDE波長依存性変化_S10362-33-050C

Preliminary

MPPC performance test in liquid xenon

- Liquid xenon test chamber @ Paul Scherrer Institute
- Setup
 - α source (²⁴¹Am) Expected number of scintillation photons :
 270-370
 - PMT(trigger)

Gain/PDE measurements

PPD self trigger (for gain) : by single photoelectron peak

MPPC

- + pre-amp(x4.3)
- (+ PM-amp, x10.6)
- --> Oscilloscope (20MHz filter, x0.38)

PMT trigger for alpha events (for PDE) : by detected # p.e./expected # p.e.

Example of AR coating(3)

Pixel capacitance depends on the pixel pitch size Gain>10⁶ is measured. (Sufficient for MEG)

PDE measurements

- PDE (Photon Detection Efficiency) = $\varepsilon_{geom} \times Q.E. \times \varepsilon_{geiger}$
 - ε_{geom} : geometrical efficiency of active region (fill factor)
 - ε_{geiger} : probability for e-h pair to induce geiger avalanche
 - Measured #p.e. / Calculated #p.e.(270-370p.e.)

Note: This PDE contains cross talk, after pulse.

PDE measurement in liquid xenon

We confirmed PPD can be sensitive to VUV by removing protection layer and by making thinner p⁺⁺ layer.

PDE ~ 10%

Temperature dependence

V_{br} vs T (S10362-33-100C)

Dark count rate (S10362-33-100C)

- At low temperature
 - Breakdown voltage will go down
 - Dark count rate will go down
 - Resistance of quenching resistor (Poly-Si) will go up

Sensor size

- Current largest PPD ~ 3x3mm²
- MEG experiment requirement ~ >10x10mm²
- Possible issues
 - dark count increase
 - non-uniformity of gain
 - larger capacitance.
 - ...
- There are already such products with 4x4 monolithic array MPPC (although those are not sensitive to UV yet).
 - Independent bias voltage can be supplied for 16 MPPCs

100pix

• Good gain (

• Outputs of 4x4 monolithic array MPPC are summed in parallel to make one "pseudo" large MPPC

• 1p.e., 2p.e.,...peaks were observed. It clearly shows that monolithic array MPPC has a good gain uniformity.

• This is the first step to realize 12x12mm² single MPPC

	Dark rate	Pitch size	$\epsilon_{geom}(Fill \ factor)$	Dark rate/area
S10362-33-100C	60-100 Hz	100 µm	0.785	8-14 Hz/mm ²
3x3 monolithic	300-600 Hz	50 µ m	0.615	6-12 Hz/mm ²
4x4 monolithic	720 Hz	50 µm	0.615	8 Hz/mm ²

12年1月23日月曜日

Waveform analysis

- Waveform digitizer is installed to study waveform leading/trailing edge, after pulse etc.
- DRS4 evaluation board: developed by PSI researchers. USB connection. 4ch inputs, 700MHz-5GHz sampling rate

S10362-33-100C : long tail by 100μ m pitch (large C) Thinner p++ : short tail even by 100μ m pitch (small quench R, will be optimized)

4x4 monolithic MPPC has longest tail due to increased C

Radiation hardness Radiation hardness

- Radiation produces defect in silicon bulk or Si/ SiO₂ interface
 - Dark count rate, leakage current, PDE, ...
- Fast neutron
 - $>10^8$ n/cm² Increase of dark count rate
 - >10¹⁰ n/cm² Loss of single p.e. detection capability
 - <1 n/s/cm²(>0.1MeV) ~ <1.6x10⁸ n/cm² for full 5-years operation in π E5 area in PSI
 - ~3.5n/s/cm² ~ 10⁷ n/cm² for one week CEX run per year for 5-years
- γ-ray
 - 200Gy Increase of leak current
 - MC: 0.58Gy with 10⁸ µ/s for 5-years for MEG
- Radiation damage might not be an issue for MEG.

Summary

- PPD could be a good candidate for MEG LXe detector upgrade.
- We have started a development of UV-sensitive PPD, and some samples show PDE almost comparable to that of PMT for VUV.
- We succeeded in detecting S.P.E. peak from the sum of 16 channels in parallel of 4x4 monolithic array MPPC (still not sensitive to UV) in liquid xenon.
- Radiation hardness might not be a problem for MEG.
- The basic idea looks promising, but still lots of issues to be addressed,
 - Further optimization of PDE for VUV
 - Sensor size, quench resistor, package design optimization
 - Readout scheme (effect of long cable, feedthrough, ...)
 - performance check by prototype detector
- Realistic MC study including cross talk, after pulse (澤田龍 25pFA10)

Backup

- キャリアがアバランシェ中 格子欠陥にトラップされ、 しばらくしてから解放さ れ、アバランシェを再び起 こす過程。
- パルスの発生時間とトリ ガーされたパルスの時間との差をプロットし、アフ ターパルスの減衰時間、発 生確率等を求める。

Dynamic range

- PPD response shows a non-linearity if the number of detected photons is large relative to total number of pixels
- Optimal condition N_{p.e.}<N_{pixel}
- Might be an issue for very shallow events for MEG LXe detector.

Radiation hardness Radiation hardness Radiation damage

- Radiation produces defect in silicon bulk or Si/SiO₂ interface which may deteriorate PPD performance.
 - Dark count rate, leakage current, PDE, ...
- Radiation damage of PPD
 - Fast neutron
 - >10⁸ n/cm² Increase of dark count rate
 - >10¹⁰ n/cm² Loss of single p.e. detection capability
 - Y-ray
 - 200Gy Increase of leak current
- Neutron flux in π E5 area in PSI
 - ~10n/s/cm²(<0.1MeV) ~ <1.6x10⁸ n/cm² for full 5years operation
- Fast neutron in CEX run
 - ~3.5n/s/cm² ~ 10⁷ n/cm² for one week CEX run per year for 5-years
- Gamma dose
 - MC: 0.58Gy with $10^8 \mu$ /s for 5-years.

PPDの 動作

- An array of Geiger-mode APDs connected in parallel
 - incident photon, e-h pair creation, Geiger mode avalanche multiplication, voltage drop by quench resister, Geiger mode stops.
 - each pixel works as a binary device
- 1 pixel = 1 photon at $N_{p.e.} << N_{pixel}$
- Sum of pixel outputs is proportional to number of impinging photons

• D. Renker and E. Lorenz, JINST 4 P04004 (2009)

• Not shown are the passivation layers, the quenching resistors and the Al connection lines. Left is the so-called p-on-n structure (blue-sensitive) and right the n-on-p (red-sensitive) structure.

Cross talk

- Hot-carrier luminescence generate signal in adjacent pixels
 - 10-20% probability
- How to suppress optical crosstalk
 - Optical isolation between pixels with a groove
 - Lowering bias voltage

Inter-pixel groove to block y

MPPC parameters

1百日	記号	S10362-33			S10931			联 合
現日		-025C	-050C	-100C	-025P	-050P	-100P	半世
有効受光面サイズ	-		3 × 3			3 × 3		mm
ピクセル数	-	14400	3600	900	14400	3600	900	-
ピクセルサイズ	-	25 × 25	50 × 50	100 × 100	25 × 25	50 × 50	100 × 100	μm

■ 電気的および光学的特性(指定のない場合はTyp.Ta=25°C)

項目		記号		S10362-33			S10931		
			-025C	-050C	-100C	-025P	-050P	-100P	甲位
開口率 *1		1 0-0	30.8	61.5	78.5	30.8	61.5	78.5	%
感度波長範囲		λ	320 ~ 900			320 ~ 900			nm
最大感度波長		λρ	440			440			nm
動作電圧範囲		-	70 ± 10 *2			70 ± 10 *2			V
ダークカウント *3	Тур.	1.000	4	6	8	4	6	8	Mcps
	Max.	-	8	10	12	8	10	12	
端子間容量		Ct	320			320			pF
時間分解能 (FWHM) *4		-	500 ~ 600			500 ~ 600			ps
逆電圧の温度係数		-	56			56			mV/°C
増倍率		M	2.75 × 105	7.5 × 10 ⁵	2.4 × 10 ⁶	2.75 × 105	7.5 × 10 ⁵	2.4 × 10 ⁶	-

*1:1ピクセル中で受光部の占める割合

*2: 個別製品の推奨動作電圧については、製品に添付されたデータを参照してください。

*3:0.5 p.e. (閾値レベル)

*4:シングルフォトンレベル

注)各値は推奨動作電圧時における値です。

型名の最後の記号は、パッケージを表します (C: セラミック、P: SMD)。

Monolithic array data sheet

S11827-3344MG(X) data sheet

2011/11/17

TEST DATA

					Ta = 25°C
Serial No.	17		18		Element No.
FPC Pin No.	Vop (V)	dark @Vop (uA)	Vop (V)	dark @Vop (uA)	
1	72.10	0.05	71.67	0.05	D1
2	72.10	0.05	71.59	0.05	D2
3	72.08	0.05	71.54	0.06	D3
4	72.06	0.05	71.51	0.07	D4
5	72.15	0.05	71.71	0.05	C1
6	72.14	0.05	71.64	0.05	C2
7	72.13	0.05	71.59	0.05	C3
8	72.11	0.05	71.57	0.06	C4
9	72.18	0.05	71.65	0.06	B4
10	72.19	0.05	71.67	0.05	B3
11	72.21	0.05	71.73	0.05	B2
12	72.21	0.05	71.79	0.05	B1
13	72.25	0.05	71.74	0.05	A4
14	72.25	0.05	71.76	0.05	A3
15	72.28	0.05	71.82	0.05	A2
16	72.29	0.06	71.88	0.05	A1

Vop : Recommended operation bias voltage for each elements. We estimated the gain at Vop as $M = 6.5 - 8.5 \times 10^5$.

Operation voltage 72V @ 25degC

--> 65V @ -108degC by using 50mV/K breakdown voltage dependence?

PPD in liquid xenon

- Need to be tested
 - PDE against VUV light
 - 通常のMPPCはUV光に対して殆ど感度がない(保護用樹脂膜)。シリコン中での真空紫外光の吸収長
 (5.5nm@rambda=175nm)有感層まで到達できない。保護膜がない場合PDE
 10-15%@r=200nm
 - dark count
 - これはどちらかというとメリットあり。
 165Kでは5桁くらいノイズは落ちる。
 - cross talk
 - quench resistor

- 抵抗値が常温の2倍程度になってしま う。波形のテイルはRCで決まっていて、 Cはほぼ温度依存はないがRが大きくなる ため、波形のテイルも長くなる。液体キ セノン温度で最適化すると常温での抵抗 値が小さくなりすぎる可能性があり、難 しいかも。高抵抗金属合金などは?
- after pulse
- sensor size
 - サイズが大きくなると容量が大きくなり、またcross talk, after pulseが多く、saturationしやすい。また波形の立ち上がり、立ち下がりも長い。fill factor は30%ほどロスするが、50µmあたりが最適か。
- radiation hardness
- dynamic range
- reflection on sensor surface

UV sensitive APD

• QE = 120% @ 170nm

• QE = transmission eff. (50%) x N_{e-h} pair (2-3)

• R. Chandrasekharan et NIMA 546(2005)

w gain(~200)...

Pre amplifier

Other experiments

Schedule of PPD development

- Summer 2012
 - Development of PPD sensitive to VUV
- End of 2012
 - Construction of prototype detector with ~100 L liquid xenon and ~500 PPDs
- 2013
 - Test beam with prototype detector
 - Construction of the final detector

0

₹

Q

Ł

₹

表 2.2: MPPC 各部の不純物濃度及び厚さ

	半導体の型 (不純物)	不純物濃度	厚さ
拡散層	$P^{++}(B)$	$1.0^{18}\times \rm{cm}^{-3}$	$0.5 \mu { m m}$
吸収層	$P^{-}(B)$	$1.0^{15}\times \rm cm^{-3}$	$1.5 \mu { m m}$
コントロール層	$P^{++}(B)$	$2.0^{17}\times \rm cm^{-3}$	$0.02 \mu { m m}$
增倍層	$P^{-}(B)$	$1.0^{15}\times \rm cm^{-3}$	$1.0 \mu { m m}$
基盤	$N^{++}(As)$	$1.0^{18}\times {\rm cm}^{-3}$	$0.5 \mu { m m}$

