MEC将来計画

東京大学素粒子物理国際研究センター

岩本敏幸

日本物理学会 2012年秋季大会 京都產業大学

12年9月14日金曜日

Outline

- Introduction & Status of the MEG experiment
- MEG upgrade design
- Improvements or redundancy with optional detectors

Lepton Flavor Violation

- MEG experiment is searching for Lepton Flavor Violating μ →eγ decay
 - Neutrino oscillation in neutrino sector, but no LFV observation yet in charged lepton sector
 - The SM with neutrino masses ~ $B(\mu \rightarrow e\gamma) < 10^{-50}$
 - Clean search for possible new physics beyond the SM
 - Well motivated new physics like SUSY-GUT, SUSY-seesaw models etc. predict large BR.

Upper limit on charged LFV process

3

Signal & Background

Signal

Radiative muon decay background Accidental background

- Simple two body decay in final state
- **E**_e, **E**_Y = 52.8MeV
- $T_e = T_Y$
- back-toback(θ_{eγ}=180°)

- timing coincident
- dominant for us
- Michel e⁺ + random γ from RMD/Annihilation in flight (AIF)

Key components

- Requirements
 - Intense μ^+ beam
 - e⁺ tracking in high rate environment
 - Good energy, position, and timing resolutions

MEG detector

Stopping target polyethylene 200µm μ⁺ beam 3x10⁷/s

Drift chamber 16 segmented modules low material budget (1.7x10⁻³X₀)

> Timing counter σ: 70-80 ps

金子(12pSH-8) LXe γ-ray calorimeter 846 PMTs 2.7ton xenon

MEG result

J. Beringer et al. (Particle Data Group), J. Phys. D86, 010001 (2012)

/

Impact on physics

MEG prospects

- Run2012 is ongoing
- Run2009+2010+2011
 analysis result will be published soon (double the statistics, <1x10⁻¹²)
- MEG experiment will finish in 2013 when the sensitivity reaches ~6x10⁻¹³ (Slower improvements after that) 内山(13aSH-9)
- Time to consider MEG upgrade (MEG phase-II)

Sensitivity Prospect

MEG upgrade design

Concept

- Improvement of the MEG sensitivity to the μ->eγ decay in a reasonably short construction(~2years) and running time(3-4years)
- High statistics
 - higher muon stopping rate
 - improved detectors efficiencies
- Background reduction
 - Improvement of the experimental resolutions
 - Less detector material to reduce γ background generation
 - Actively tag and veto specific backgrounds
- Schedule
 - MEG upgrade proposal to PSI in Jan. 2013
 - Aims at BR(μ ->e γ) ~ 5x10⁻¹⁴ with two years R&D and three years DAQ

Performance of MEG detector to be improved

Variable	Obtained			
ΔE _Y	1.6 (w>3cm), 2.0(0.8 <w<3cm), 2.7(0<w<0.8cm)< td=""></w<0.8cm)<></w<3cm), 			
Δt _Y	67			
γ position (mm)	5(u,v), 6(w)			
γ efficiency(%)	63			
$\Delta P_{e} \left(keV \right)$	330			
e ⁺ angle (mrad)	$11(\mathbf{\phi}_{e}), 9(\mathbf{\theta}_{e})$			
Δt_{e+} (psec)	107			
e ⁺ efficiency(%)	40			
Δt_{eY} (ps)	120			

Beam line and target

 World's most intense DC muon beam 10⁸ µ⁺/s is possible at PSI (currently 3x10⁷µ⁺/s)

- µ momentum, target thickness, target angle etc. can be optimized
- Current setting : 28MeV/c, 205µm thickness, 20.5deg angle ~ 82% stopping efficiency

COBRA

Schematic MEG Beam Transport System

Upgrade plan: Surface beam, 140µm thickness, placed at 15deg, ~7.5x10⁷ Hz stop rate is obtained

Positron spectrometer

- Higher detection efficiency
 - need to minimize material along the positrons path to timing counter (40% -> ?)
- Minimize the contribution of the track length uncertainty
 - σ_{Te+} = 107ps
 = 76ps (TC) ⊕ 75ps (track)
- Good angle, momentum resolutions
- COBRA magnet will be re-used

Positron tracker

- Stereo wire type of drift chamber
- Unique volume, cylindrical DC
 - number of hits ~ 60
 (3x more than now)
 - low material budget (1.7x10⁻³-> 1.1x10⁻³ X₀)
 - cluster timing technique to minimize a bias of impact parameter meas.
- Expected performance
 - $\epsilon_e :> 85\%$ (40% now)
 - σ_p : **110-130keV** (330keV)
 - **σ**_{θφ} : **5-6mrad** (9,11mrad)

Tests for positron tracker

50cm

- Small prototype for resolution studies
 - measure radial resolution
 (σ_r~50-100μm)

• Telescope for cosmic rays

 accuracy ~10µm (enough for prototype test) Al body

20cm

8x8 square cells with 7mm side 25µm gold plated tungsten sense-wire and eight 50µm Cu-Be field-wires

Alternative for positron tracker, TPC

- Time projection chamber (TPC)
- Unique gas volume, Radial TPC
- Electrodes should be radial, electron detection device (GEM) cylindrically curved
- Helium-base gas mixture to minimize multiple scattering effect
- Number of hits >60 (depends on readout design)
- Expected performance
 - σ_p : 80-100keV/c
 - $\sigma_{\theta\phi}$: **4-6mrad**
 - ε_e : ~80%
- First step : Cylindrical GEM prototype

10x10cm² GEM foil

Pixelated timing counter

- New pixelated timing counter design : 60x30x5mm³ scinti. (~800) and SiPM readout (~ 5000)
- A good timing resolution of single pixel. Further improvement using multiple hit time
- Higher level of segmentation, works at 1x10⁸µ/s (each pixel has ~1kHz hits, current TC PMT ~1MHz)
- High timing performance
 - $\sigma_T < 38 \text{ps}$ (current TC ~76 ps)
 - $\sigma_{e\gamma} = 80 \text{ps} (\text{current} \sim 120 \text{ps})$
 - track length uncertainty 75ps -> **11ps**
 - $\sigma_{\rm Y} = 67 \rm ps$

Tests for pixelated timing counter

- Resolution of single pixel counter 25x12x5mm³ is measured by µSR
 - $\sigma(k \cdot E)^{0.5} = 23 ps \cdot MeV^{0.5}$
- We confirmed the timing resolution,
 - $\sigma(k \cdot E)^{0.5} = 15 \text{ ps} \cdot \text{MeV}^{0.5}$
 - with waveform digitizer, the good timing resolution is obtained
- A larger counter is suitable to reduce # of pixels
 - 30x60x4.5mm³ is tested, σ ~50ps
- Series and parallel connections of SiPM to further reduce # of ch.

A. Stoykov et al. NDIP 2011

Y-ray detector

- There is non-uniform response at shallow events with 2" PMT on inner face
- Small photo sensors for inner face
 - better position, energy resolution at shallow events
 - high detection efficiency
 - 216 2"PMT -> 4000 12x12mm² MPPC

12年9月14日金曜日

Y-ray detector

- Slant angle of lateral PMTs
 - better uniformity
- Wider inner face
 - reduce energy leakage

Present

Improvements

- Energy resolution
- Position resolution
- 10% higher detection efficiency

R&D for LXe detector

- Development of VUV (LXe scintillation ~175nm) sensitive MPPCs with Hamamatsu
 - PDE ~ 10% achieved
- 4x4 Monolithic array MPPC signals are connected in parallel, and 1p.e. is observed in LXe.
- Next step is to make large-area MPPC with >10x10mm² (this month)

- Prototype detector
 - 70L LXe, 576 MPPCs on gamma entrance face and 180 PMTs on the other faces
 - performance demonstration

Trigger and DAQ

- Integrate DRS and trigger on same board
 - Much increased number of channels
- Higher bandwidth
 - Bandwidth of 200MHz -> above 700MHz to recognize individual clusters originating from the primary ionization for drift chamber
 - Dedicated comparator for each channel : rate counter or trigger
- Improve timing resolution from electronics (40ps->?)
- Switchable gain amplifiers
- MPPC biasing integrated

23

Performance

Variable	Obtained	Upgrade		
ΔΕγ	1.6 (w>3cm), 2.0(0.8 <w<3cm), 2.7(0<w<0.8cm)< td=""><td>0.5 (w>2cm) <mark>0.6 (w<2cm)</mark></td></w<0.8cm)<></w<3cm), 	0.5 (w>2cm) <mark>0.6 (w<2cm)</mark>		
Δt _Y	67	67		
γ position (mm)	5(u,v), 6(w)	3		
γ efficiency(%)	63	69		
ΔP_{e} (keV)	330	110-130		
e ⁺ angle (mrad)	11(φ _e),9(θ _e)	5-6		
Δt_{e+} (psec)	107	50		
e ⁺ efficiency(%)	40	>85		
$\Delta t_{e\gamma}$ (ps)	120	80		

Background Reduction

- Resolution improvements
- Low material budget of positron spectrometer (AIF)
- Tag of RMD using RDC (later)
- Tag of AIF using positron track with a gamma-ray

Y-ray detector response

Sensitivity

- Sensitivity of upgraded MEG as a function of the DAQ time in weeks
- Assuming 180 DAQ days per year
- UL on BR(μ->eγ) of ~5x10⁻¹⁴ in 3 years of running

Impact on physics

BR $(\mu \rightarrow e \gamma)$

Improvements or redundancy with optional detectors

- Active Target
- Silicon Vertex Tracker
- Radiative Muon Decay veto Counter

Active Target

- Muon decay vertex measurement by detecting the positron from the stopped muon decay (Active target)
 - thin material to minimize positron multiple scattering and γ background from positron annihilation in flight(AIF)
- Thin scintillating fibers (250µm) coupled to SiPMs. One single layer of horizontally laid thin fibers (Y-coordinate measurement)
 - Improvements of σ_p and σ_{ϕ} .
 - Main challenge :
 - Detection efficiency > 80%, position resolution <100µm, timing resolution <500ps
 - R&D study is necessary

Target	thickness (µm)/	σ_p/RMS	σ_{ϕ}/RMS	σ_{θ}/RMS	comment
	angle (deg)	(keV)	(mrad)	(mrad)	
Passive	140/15	125/270	5.8/8.0	5.0/6.2	baseline solution
Passive	205/20.5	120/240	7.0/9.6	5.6/6.5	present target
Active	250/ 20.5	100/210	5.0/6.6	5.7/6.6	$\epsilon_d = 100\%$

Silicon vertex tracker : SVT

- Silicon pixel detectors
- Good stability of operation under high rate, low occupancy, high spatial resolution
- Material budget is crucial for low energy experiments (thin sensors like HV-MAPS for Mu3e etc., ~50µm thickness)
- Optional detector for precise measurements of muon decay vertices, of positron emission angles, and relaxing the requirements for the main tracker design

~5cm

Radiative muon decay veto counter : RDC

- Contribution of RMD γ-rays in accidental background spectrum is dominant above 48MeV
- RMD with a high energy γ-ray has low momentum positron (typically <2MeV), and bending radii <4cm.
- Radiative muon decay veto counters (RDC) for both US and DS sides
 - Module : segmented plastic scintillation counters of 250µm thickness, optical fibers to transmit scintillation lights, and 1x1mm² SiPMs for readout
 - Tagging efficiency: 70% for events with γ -ray > 48MeV
 - Probability that a signal has accidentally a RDC hit is ~15%. Not to lose signal efficiency, the PDF of time difference between RDC hits and LXe timing can be used.

31

Summary

- MEG is running now, and will finish in 2013 when the sensitivity reach ~6x10⁻¹³ (Slower improvements after that).
- MEG Collaboration has started serious discussion for upgrade with higher µ beam intensity, with higher detection efficiency, with higher detector performance, and with lower background environment.
- Two positron trackers with a unique volume, cylindrical wire drift chamber, TPC, are being considered. Prototype study will be performed soon. Pixelated timing counter is considered for timing measurement. Significant improvements of resolutions and efficiency can be expected.
- Inner face of γ-ray detector will be modified by exchanging the current 2" PMT to MPPCs to minimize non-uniform response.
- MEG upgrade proposal will be presented to PSI on January 2013.
- Target sensitivity is $\sim 5 \times 10^{-14}$ with two years R&D and three years DAQ.

Backup

Cost estimate (rough)

- LXe : 1.6MEuro
- TC : 0.2MEuro
- DAQ : 0.7MEuro
- DC : 0.8MEuro

Responsibilities

TABLE XIII: Subdivision of the construction responsibilities

Item	Nation	Responsibility				
Liquid xenon	Japan	SiPMs, LXe, Cryogenics				
Drift Chamber	Italy	End-caps, Wiring, FE electronics, HV				
Dint Chamber	Switzerland	Gas-System				
	Italy	SiPMs, Support structure				
Timing counter	Japan	Scintillator Laser system Cables/Connectors				
	UCI	Semimator, Laser system, Cables/Connectors				
DAO	Italy	Trigger boards				
DAQ	Switzerland	WaveDREAM boards				

beam and target

Slit opening (Collimator position				COBRA center			
	R_{μ} (H	Iz) at 2	mA	σ_x (n	nm)		$\sigma_y \text{ (mm) } R_\mu \text{ (Hz)}$	at 2mA	$\sigma_x (\text{mm})$	$\sigma_y (\text{mm})$	
250/28	0 9	9 · 10 ⁷		21.	8		18.6 7.	107	9.6	10.1	
115/11	5 3	.5 · 107		21.	4		15.5 2.9	· 10 ⁷	8.9	8.8	
70/70	6	.5 · 10 ⁶		20.	4		15.8 5.8	· 10 ⁶	8.4	8.3	
Beam	Target Tickness	Target Angle	US	Tg+Supp	Tg	DS	Stop Rate 2.3mA Whole Target	Stopping Efficiency	Stopping Quality	Measuring Time	
-	(μ m)	(deg)	(%)	(%)	(%)	(%)	x10'Hz	(%)	Factor SQF	yrs	
Surface	250	20.5	8.4	75.3	68.1	16.2	9.6	82.3	3.0	2.4	
Surface	205	20.5	7.2	65.9	53.5	26.8	8.4	71.1	1.7	3.1	
Surface	180	20.5	7.3	61.6	48.8	31.0	7.8	66.5	1.4	3.4	
Surface	160	20.5	9.3	57.5	44.7	33.2	7.3	63.4	1.2	3.7	
Surface	140	20.5	13.7	53.4	40.8	32.8	6.8	62.0	1.0	4.1	
Surface	100	20.5	23.6	41.8	28.1	34.5	5.3	54.8	0.6	5.9	
Surface	180	15.0	5.7	64.9	49.9	29.3	8.2	68.9	1.5	3.3	
Surface	160	15.0	7.6	62.3	45.8	29.9	7.9	67.6	1.3	3.6	
Surface	140	15.0	7.5	59.4	43.1	33.0	7.5	64.3	1.2	3.8	
Surface	120	16.0	9.7	52.8	36.7	37.4	6.7	58.6	0.9	4.5	
Sub-Surf	250	20.5	5.8	78.4	71.3	15.7	8.2	83.4	3.5	2.8	
Sub-Surf	205	20.5	5.3	70.2	58.5	24.3	7.3	74.3	2.1	3.5	
Sub-Surf	140	20.5	17.3	60.7	45.0	22.0	6.3	73.4	1.4	4.5	
Sub-Surf	100	20.5	32.5	47.8	37.3	19.7	5.0	70.8	1.1	5.4	
Sub-Surf	180	15.0	4.8	69.6	54.6	25.6	7.2	73.1	1.9	3.7	
Sub-Surf	160	15.0	5.5	66.6	50.9	27.8	6.9	70.6	1.6	4.0	
Sub-Surf	140	15.0	7.2	64.8	46.1	27.8	6.7	69.6	1.4	4.4	
Sub-Surf	120	16.0	9.7	59.1	40.6	31.0	6.1	65.6	1.1	5.0	

Resolution on the impact parameter: $130 \div 300 \ \mu m$

- He/iC4H10 gas mixture
- 25 µm signal wires
- 500 and 10000 cells

Limiting factors

- Pre-amplifier bandwidth and TDC resolution
- Primary ionization density

Existing chamber

The 1 ns timing is possible which imply an average single hit resolution from ~ 150 μ m (poor electronics) to ~ 100 μ m (fast electronics)

Cluster timing technique

Current DC

- $\sigma_{R}(mm) = 250(core)$
- $\sigma_{z}(mm) = 700(core)$
- $\sigma_p = 350 \text{keV}$
- $\sigma_{\varphi} = 6.9 \text{mrad}(\text{at } \varphi = 0, 11 \text{mrad aver.})$
- $\sigma_{\theta} = 10 \text{mrad}$
- $\sigma_{Y} = 1.1 \text{mm}$
- $\sigma_{z} = 1.8 \text{mm}$
- DC-TC matching : 41%

Pixel TC

• Single pixel counter

$$\sigma_{\rm single} = \frac{19\,\rm ps}{\sqrt{kE[\rm MeV]}}$$

Multiple hit

$$\sigma_{\text{overall}}^2 = \frac{\sigma_{\text{single}}^2}{N_{\text{hit}}} + \frac{\sigma_{\text{inter-pixel}}^2}{N_{\text{hit}}} + \sigma_{\text{MS}}^2(N_{\text{hit}})$$

• $\sigma_{\text{inter-pixel}} \sim 30\text{-}40\text{ps}$

- Effect of Multiple Scattering
 - angular resolution of new tracker ~ 5mrad
 - Time spread $\sigma_{\text{track}} \sim 0.7 \text{ps}$
 - Angular spread due to multiple scattering ~ 35mrad for 5mm-thick pixel
 - Time spread $\sigma_{MS} \sim 5ps$ for 30mm pixel spacing +45° incident angle
- Average time resolution 30-35 ps

10

Number of hit pixels

8

Accidental Background

- Accidental background is our dominant background source.
- It is important to reduce background, improvements of all resolutions, less material budget, and if possible, to tag each background by using veto counters etc., and to remove those.

AIF background

