

MEG実験 陽電子スペクトロメータの 性能と今後の展望

Yuki Fujii On behalf of the MEG collaboration JPS meeting @ Hirosaki University 17th Sep. 2011

日本物理学会@弘前大学

2011/9/17

Outline

- Introduction
- Run 2009 & 2010
- Status of run 2011
- Noise reduction
- Summary and prospects

μ

- The decay of $\mu \rightarrow e \gamma$ is strictly forbidden in the standard model because of lepton flavor conservation
- BUT... some of beyond the SM (e.g. SUSY) predict this decay can happen in the range of $10^{\cdot 11}$ - $10^{\cdot 15}$
 - Previous upper limit is 1.2x10⁻¹¹ (MEGA experiment)
 - $\mu \rightarrow e \gamma$ is a good probe to search for new physics $\frac{1}{\gamma}$
- Background
 - Radiative decay (prompt)
 - Michel decay + γ (accidental)
- Experimental requirement
 - High resolution detector → reduce background
 - Operation under **high luminosity** → high statistics

- The MEG experiment started to search for $\mu \rightarrow e \gamma$ in 2008
 - World's most intense DC μ^+ beam @ PSI
 - 900 litter large Xenon calorimeter → (白:17pSE2, 金子:17pSE3)
 - The COBRA (COnstant Bending RAdius) spectrometer → main topic
- Result 2009 & 2010 : Br(μ→eγ) < 2.4x10⁻¹² (90 % C.L.)
 - 5 times lower than previous one
 → (大谷:18aSJ4, 岩本:19aSD7, 澤田:19aSD8)
- Our sensitivity goal is a few $\times 10^{-13}$
 - Performance improvement is essential !

- The COBRA spectrometer
 - COBRA magnet : fast sweeping low momentum e+ and get uniform angular response for signal e+
 - Drift chamber : e+ tracking, low mass materials to reduce the production of background gamma ray
 - Vernier pattern method
 - Waveform data acquisition
 - Timing counter : e+ timing, bar counters (measuring) + fiber counters (z measuring)

- The COBRA spectrometer
 - COBRA magnet : fast sweeping low momentum e+ and get uniform angular response for signal e+
 - Drift chamber : e+ tracking, low mass materials to reduce the production of background gamma ray
 - Vernier pattern method
 - Waveform data acquisition
 - Timing counter : e+ timing, bar counters (φ measuring) + fiber counters (z measuring)

- The COBRA spectrometer
 - COBRA magnet : fast sweeping low momentum e+ and get uniform angular response for signal e+
 - Drift chamber : e+ tracking, low mass materials to reduce the production of background gamma ray
 - Vernier pattern method
 - Waveform data acquisition
 - Timing counter : e+ timing, bar counters (φ measuring) + fiber counters (z measuring)

e+

Х

У**1**

Introduction

Positron measurement

- Coordinate system
- Hit reconstruction
 - $R \rightarrow$ time reading edge
 - Z → charge division w/ Vernier pad
- Track reconstruction
 - Kalman filter

e+

Y, cm

-5

7

θ

Run 2009 & 2010

- Run and analysis summary of 2009 and 2010
- Drift chamber alignment
 → Millipede using cosmic rays
- COBRA Magnetic field
 → reconstructed field
 - B_{ϕ} and B_r are corrected a possible misalignment of hole probe to conserve the Maxwell's equations from measured B_z
- All APDs off because of noise problem
- Drift chamber waveform in 2010 was a little noisier than in 2009 (⊂ of pedestal : ~1.8 mV → ~2.0 mV)

Run 2009 & 2010

Performance estimation

- Momentum resolution : Michel edge fitting and double turn events
- Angular & vertex resolutions : Double turn events
- Efficiency : count #of MD
- **Correlations** : sideband data

^{2011/9/17}

2011/9/17

Run 2009 & 2010

 All performance of the e+ spectrometer are estimated by data itself (radiative decay events, Michel decay events, and so on)

	2009	2010	
E _e	330 keV (core 82 %)	330 keV (core 79 %)	
φ (at φ=0)	6.7 mrad	7.2 mrad	
θ	9.4 mrad	11.0 mrad	
Z	0.15 cm	0.20 cm	
Y	0.11 cm (core 87 %)	0.11 cm (core 85 %)	
T _{eγ} (RMD)	150 psec	130 psec	
ε _{Michel}	40 %	34 %	

Run 2009 & 2010

 All performance of the e+ spectrometer are estimated by data itself (radiative decay events, Michel decay events, and so on)

	2009	2010	
E _e	330 keV (core 82 %)	330 keV (core 7) %)	
φ (at φ=0)	6.7 mrad	7.2 mrad	
θ	9.4 mrad	11.0 mrad	
Z	0.15 cm	0.20 cm	
Y	0.11 cm (core 87 %)	0.11 cm (core 85 %)	
Τ _{eγ} (RMD)	150 psec	130 psec	
ε _{Michel}	40 %	34 %	

Better DRS clock Increased dead channels

Status of 2011

- 7 drift chamber modules were replaced because of increased remaining current or frequent trip
- Physics data taking started at the end of June
- In 2009 and 2010, only 14 MHz noise is dominant

 \rightarrow reduced by adjusting charge integration time

- other noise components appeared (>30 MHz from APD fiber counters)
- Working of hardware noise reduction was done in the middle of July
 - Change HV module for drift chambers and turn off noisy APD channels

Entries

Status of 2011

• At the beginning of 2011 run, noise situation was the worst...

But

Status of 2011

- At the beginning of 2011 run, noise situation was the worst...
- After hardware modifications, the lowest noise condition realized !
- The APD fiber counters are partially operational now (not all)
 - Data quality to be checked

- Performance of noisy runs and low noise runs
 - compare 2 condition by checking single hit resolutions (residuals between reconstructed wire hit and reconstructed track)
 - Single hit resolutions are estimated from double Gaussian fitting
 ~ 1 month data taking

	2010	2011 (noisy) 🖌	2011 (low noise)
Intrinsic Z (um)	668 (core 56 %)	758 (core 52 %)	710 (core 56 %)
Intrinsic R (um)	209 (core 66 %)	233 (core 66 %)	197 (core 67 %)

- Give up noisy data to improve ? → OF COURSE NO !
- Filtering
 - Low pass filter \rightarrow small contribution
 - High pass filter \rightarrow distort the shape of signal pulse
 - FFT

2011/9/17

- Large periodical noises are eliminated in FFT power spectrum from DCH waveform
- After that, filtered spectrum is transformed inverse to the waveform
 - Charge integration done for filtered waveform

- Large periodical noises are eliminated in FFT power spectrum from DCH waveform
- After that, filtered spectrum is transformed inverse to the waveform
 - Charge integration done for filtered waveform

• Thanks to offline noise filtering, twice better \circ of pedestal realized (2.4 mV \rightarrow **1.2** mV)

- Thanks to offline noise filtering, twice better of pedestal realized (2.4 mV→1.2 mV)
- Single hit Z resolution improved !!
 - 758 → 664 um, #of hits increased

• Thanks to offline noise filtering, twice better \circ of pedestal realized (2.4 mV \rightarrow **1.2** mV)

- Filtering for waveform in low noise condition
 - What happen if FFT filtering used in low noise condition ?
 - Single hit Z resolution
 - Only a few % better (710 \rightarrow 697 um)
 - #of hits increased
 - Efficiency and resolutions improved, too

Performance summary

- 2011 performance summary (Preliminary)
 - Only parts of data were analyzed
 - Correction for resolutions in 2011 not yet done
 - Calibrations still ongoing

Pre	liminar	2010	2011 noisy	2011 low noise
	Intrinsic Z (um)	668 (core 56 %)	664 (core 57 %)	697 (core 56 %)
	Intrinsic R (um)	209 (core 66 %)	237 (core 65 %)	201 (core 68 %)
	E _e (keV)	330 (core 79 %)	380 (core 79 %)	321 (core 75 %)
	φ (mrad)	7.2 (core, $\phi = 0$)	12.4 (core 78 %)	11.4 (core 76 %)
	heta (mrad)	11.0	11.6	11.7
	#of 2 turn e+	-	2499 → 4019	3184 → 3833

1

Summary and prospects

- Summary
 - Thanks to FFT noise filtering, data quality of noisy runs achieved to the level of low noise situation !
 - Further check needed
 - Transformation accuracy
 - Check with more data
 - Single hit R resolution
- Prospects
 - Calibrations for the spectrometer in preparation now
 - Better resolutions and efficiency expected
 - Monochromatic calibration source for the spectrometer
 - Mott scattering with e+ beam (energy tunable)
 - Hardware improvement for ε_{e} (\doteqdot reduce materials between DC and TC)
 - Readout cable exchange to thinner one (40 $\% \rightarrow$ 50 + x %)
 - According to changing cables, the support structure system for drift chambers will be updated

backup

日本物理学会@弘前大学

011/9/17

Vernier method

Vernier a is defined as

$$\alpha = \tan^{-1}(\epsilon_1/\epsilon_2)$$

where

$$\epsilon_a = \frac{Q_U - Q_D}{Q_U + Q_D}.$$

 Compare α to reconstructed z position, we can decide z more precisely

26

Positron correlations

Correlations

Efficiency

• Material between drift chambers and timing counters make lower efficiency because of multiple scattering

Check for APD data

- Quality check for APD outputs
- First step
 - Matching between hit z at fiber and e+ track at timing counter bars
 - Only downstream of APDs are working now

Check for APD data

- Quality check for APD outputs
- First step
 - Matching between hit z at fiber and e+ track at timing counter bars → peak position is same, but large tail found
 - Only downstream of APDs are working now

