MEG実験
陽電子スペクトロメータの性能と今後の展望

Yuki Fujii
On behalf of the MEG collaboration
JPS meeting @ Hirosaki University
17th Sep. 2011
Outline

- Introduction
- Run 2009 & 2010
- Status of run 2011
- Noise reduction
- Summary and prospects
Introduction

- The decay of $\mu \rightarrow e \gamma$ is strictly forbidden in the standard model because of lepton flavor conservation.

- BUT... some of beyond the SM (e.g. SUSY) predict this decay can happen in the range of 10^{-11}-10^{-15}.
 - Previous upper limit is 1.2×10^{-11} (MEGA experiment).
 - $\mu \rightarrow e \gamma$ is a good probe to search for new physics!

- Background
 - Radiative decay (prompt)
 - Michel decay + γ (accidental).

- Experimental requirement
 - High resolution detector \rightarrow reduce background.
 - Operation under high luminosity \rightarrow high statistics.
The MEG experiment started to search for $\mu \rightarrow e \gamma$ in 2008.
- World’s most intense DC μ^+ beam @ PSI
- 900 litter large Xenon calorimeter \rightarrow (白:17pSE2, 金子:17pSE3)
- The COBRA (COntant Bending RAdius) spectrometer \rightarrow main topic

Result 2009 & 2010: $\text{Br}(\mu \rightarrow e \gamma) < 2.4 \times 10^{-12}$ (90 % C.L.)
- 5 times lower than previous one
 \rightarrow (大谷:18aSJ4, 岩本:19aSD7, 澤田:19aSD8)

Our sensitivity goal is a few $\times 10^{-13}$
- Performance improvement is essential!
Introduction

- The COBRA spectrometer
 - **COBRA magnet**: fast sweeping low momentum e+ and get uniform angular response for signal e+
 - **Drift chamber**: e+ tracking, low mass materials to reduce the production of background gamma ray
 - Vernier pattern method
 - Waveform data acquisition
 - **Timing counter**: e+ timing, bar counters (φ measuring) + fiber counters (z measuring)
Introduction

- The COBRA spectrometer
 - **COBRA magnet**: fast sweeping low momentum e+ and get uniform angular response for signal e+
 - **Drift chamber**: e+ tracking, low mass materials to reduce the production of background gamma ray
 - Vernier pattern method
 - Waveform data acquisition
 - **Timing counter**: e+ timing, bar counters (φ measuring) + fiber counters (z measuring)
Introduction

- The COBRA spectrometer
 - **COBRA magnet**: fast sweeping low momentum e+ and get uniform angular response for signal e+
 - **Drift chamber**: e+ tracking, low mass materials to reduce the production of background gamma ray
 - Vernier pattern method
 - Waveform data acquisition
 - **Timing counter**: e+ timing, bar counters (ϕ measuring) + fiber counters (z measuring)
Introduction

- **Positron measurement**
 - Coordinate system
 - Hit reconstruction
 - $R \rightarrow$ time reading edge
 - $Z \rightarrow$ charge division w/ Vernier pad
 - Track reconstruction
 - Kalman filter
Run 2009 & 2010

- Run and analysis summary of 2009 and 2010
- Drift chamber alignment
 - Millipede using cosmic rays
- COBRA Magnetic field
 - reconstructed field
- B_ϕ and B_r are corrected a possible misalignment of hole probe to conserve the Maxwell’s equations from measured B_z
- All APDs off because of noise problem
- Drift chamber waveform in 2010 was a little noisier than in 2009 (σ of pedestal: ~ 1.8 mV $\rightarrow \sim 2.0$ mV)
Run 2009 & 2010

- Performance estimation
- **Momentum resolution**: Michel edge fitting and double turn events
- **Angular & vertex resolutions**: Double turn events
- **Efficiency**: count # of MD
- **Correlations**: sideband data
Run 2009 & 2010

- All performance of the e+ spectrometer are estimated by data itself (radiative decay events, Michel decay events, and so on)

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_e</td>
<td>330 keV (core 82 %)</td>
<td>330 keV (core 79 %)</td>
</tr>
<tr>
<td>ϕ (at $\phi=0$)</td>
<td>6.7 mrad</td>
<td>7.2 mrad</td>
</tr>
<tr>
<td>θ</td>
<td>9.4 mrad</td>
<td>11.0 mrad</td>
</tr>
<tr>
<td>Z</td>
<td>0.15 cm</td>
<td>0.20 cm</td>
</tr>
<tr>
<td>Y</td>
<td>0.11 cm (core 87 %)</td>
<td>0.11 cm (core 85 %)</td>
</tr>
<tr>
<td>$T_{e\gamma}$ (RMD)</td>
<td>150 psec</td>
<td>130 psec</td>
</tr>
<tr>
<td>$\varepsilon_{\text{Michel}}$</td>
<td>40 %</td>
<td>34 %</td>
</tr>
</tbody>
</table>
Run 2009 & 2010

- All performance of the e+ spectrometer are estimated by data itself (radiative decay events, Michel decay events, and so on)

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_e</td>
<td>330 keV (core 82 %)</td>
<td>330 keV (core 79 %)</td>
</tr>
<tr>
<td>ϕ (at $\phi=0$)</td>
<td>6.7 mrad</td>
<td>7.2 mrad</td>
</tr>
<tr>
<td>θ</td>
<td>9.4 mrad</td>
<td>11.0 mrad</td>
</tr>
<tr>
<td>Z</td>
<td>0.15 cm</td>
<td>0.20 cm</td>
</tr>
<tr>
<td>Y</td>
<td>0.11 cm (core 87 %)</td>
<td>0.11 cm (core 85 %)</td>
</tr>
<tr>
<td>$T_{e\gamma}$ (RMD)</td>
<td>150 psec</td>
<td>130 psec</td>
</tr>
<tr>
<td>$\varepsilon_{\text{Michel}}$</td>
<td>40 %</td>
<td>34 %</td>
</tr>
</tbody>
</table>
Status of 2011

- 7 drift chamber modules were replaced because of increased remaining current or frequent trip
- Physics data taking started at the end of June
- In 2009 and 2010, only 14 MHz noise is dominant
 - reduced by adjusting charge integration time
 - other noise components appeared (>30 MHz from APD fiber counters)
- Working of hardware noise reduction was done in the middle of July
 - Change HV module for drift chambers and turn off noisy APD channels
Status of 2011

- At the beginning of 2011 run, noise situation was the worst...

- But
Status of 2011

- At the beginning of 2011 run, noise situation was the worst...

- After hardware modifications, the lowest noise condition realized!

- The APD fiber counters are partially operational now (not all)
 - Data quality to be checked
Noise reduction

- Performance of noisy runs and low noise runs
 - compare 2 condition by checking single hit resolutions (residuals between reconstructed wire hit and reconstructed track)
 - Single hit resolutions are estimated from double Gaussian fitting

- Give up noisy data to improve? → **OF COURSE NO!**

- Filtering
 - Low pass filter → small contribution
 - High pass filter → distort the shape of signal pulse
 - FFT

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011 (noisy)</th>
<th>2011 (low noise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic Z (um)</td>
<td>668 (core 56 %)</td>
<td>758 (core 52 %)</td>
<td>710 (core 56 %)</td>
</tr>
<tr>
<td>Intrinsic R (um)</td>
<td>209 (core 66 %)</td>
<td>233 (core 66 %)</td>
<td>197 (core 67 %)</td>
</tr>
</tbody>
</table>

~ 1 month data taking
Noise reduction

- Large periodical noises are eliminated in FFT power spectrum from DCH waveform
- After that, filtered spectrum is transformed inverse to the waveform
 - Charge integration done for filtered waveform
Noise reduction

- Large periodical noises are eliminated in FFT power spectrum from DCH waveform
- After that, filtered spectrum is transformed inverse to the waveform
 - Charge integration done for filtered waveform
Noise reduction

- Thanks to offline noise filtering, twice better of pedestal realized (2.4 mV → 1.2 mV)
Noise reduction

- Thanks to offline noise filtering, twice better σ of pedestal realized (2.4 mV \rightarrow 1.2 mV)
- Single hit Z resolution improved!!
 - 758 \rightarrow 664 um, #of hits increased
Noise reduction

- Thanks to offline noise filtering, twice better of pedestal realized (2.4 mV → 1.2 mV)
- Single hit Z resolution improved!!
 - 758 → 664 um, #of hits increased
- Efficiency & resolutions
 - Very good!

432 keV (80 %) → 380 keV (79 %)

11.7 mrad (68 %) → 12.4 mrad (78 %)

13.1 mrad → 11.6 mrad
Noise reduction

- Filtering for waveform in low noise condition
 - What happen if FFT filtering used in low noise condition?
 - Single hit Z resolution
 - Only a few % better (710 → 697 um)
 - # of hits increased
 - Efficiency and resolutions improved, too

- 390 keV (82 %) → 321 keV (75 %)
- 14.4 mrad (84 %) → 11.4 mrad (76 %)
- 12.0 mrad → 11.7 mrad
Performance summary

- 2011 performance summary (Preliminary)
 - Only parts of data were analyzed
 - Correction for resolutions in 2011 not yet done
 - Calibrations still ongoing

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011 noisy</th>
<th>2011 low noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic Z (um)</td>
<td>668 (core 56 %)</td>
<td>664 (core 57 %)</td>
<td>697 (core 56 %)</td>
</tr>
<tr>
<td>Intrinsic R (um)</td>
<td>209 (core 66 %)</td>
<td>237 (core 65 %)</td>
<td>201 (core 68 %)</td>
</tr>
<tr>
<td>E_e (keV)</td>
<td>330 (core 79 %)</td>
<td>380 (core 79 %)</td>
<td>321 (core 75 %)</td>
</tr>
<tr>
<td>ϕ (mrad)</td>
<td>7.2 (core, $\phi=0$)</td>
<td>12.4 (core 78 %)</td>
<td>11.4 (core 76 %)</td>
</tr>
<tr>
<td>θ (mrad)</td>
<td>11.0</td>
<td>11.6</td>
<td>11.7</td>
</tr>
<tr>
<td>#of 2 turn e+</td>
<td>-</td>
<td>2499 \rightarrow 4019</td>
<td>3184 \rightarrow 3833</td>
</tr>
</tbody>
</table>
Summary and prospects

• Summary
 • **Thanks to FFT noise filtering, data quality of noisy runs achieved to the level of low noise situation!**
 - Further check needed
 - Transformation accuracy
 - Check with more data
 - Single hit R resolution

• Prospects
 • **Calibrations for the spectrometer in preparation now**
 - Better resolutions and efficiency expected
 • Monochromatic calibration source for the spectrometer
 - Mott scattering with e+ beam (energy tunable)
 • Hardware improvement for ε_e (\equiv reduce materials between DC and TC)
 - **Readout cable exchange to thinner one (40 % \rightarrow 50 + x %)**
 - According to changing cables, the support structure system for drift chambers will be updated
backup
Vernier method

Vernier angle α is defined as

$$\alpha = \tan^{-1} \left(\frac{\epsilon_1}{\epsilon_2} \right)$$

where

$$\epsilon_a = \frac{Q_U - Q_D}{Q_U + Q_D}.$$

- Compare α to reconstructed z position, we can decide z more precisely.
Positron correlations

- Correlations

Case: \(E_{\text{meas}} < E_{\text{true}} \)
\(\gamma_{\text{meas}} < \gamma_{\text{true}} \)
\(\phi_{\text{meas}} > \phi_{\text{true}} \)

...
Efficiency

- Material between drift chambers and timing counters make lower efficiency because of multiple scattering.

Breakdown of Inefficiency caused by DC components:

- Frame: 49%
- Cable: 28%
- Preamp: 19%
- Duct: 4%
Check for APD data

- Quality check for APD outputs

- **First step**
 - Matching between hit z at fiber and e^+ track at timing counter bars
 - Only downstream of APDs are working now
Check for APD data

- Quality check for APD outputs

- First step
 - Matching between hit z at fiber and e+ track at timing counter bars → peak position is same, but large tail found
 - Only downstream of APDs are working now

Data and MC comparisons for hit z at fiber and track z at bar counters.