

# **Analysis of the First MEG Physics Data to** Search for the Decay $\mu^+ \rightarrow e^+ \gamma$ (MEG最初のデータによる *μ* <sup>+</sup>→e<sup>+</sup> γ 崩壊の解析) 日本物理学会2011年秋季大会



ICEPP, the University of Tokyo



16/September/2011

 $\mu^+ \rightarrow e^+ \gamma$  search experiment, MEG started physics data taking in 2008. We analyzed the first 3 months data. The analysis and the result are presented.

- Introduction
- MEG experiment and apparatus
- RUN2008
- Analysis
  - Detector analysis & performance
  - $\mu^+ \rightarrow e^+ \gamma$  search analysis
- Discussion
- Status & prospect
- Conclusion



## **Subject of research**

- **Lepton-flavor violating** muon decay :  $\mu \rightarrow e\gamma$ 
  - charged LFV : Forbidden in SM
  - Out of experimental reach with finite v mass (BR< $10^{-54}$ )
  - Clear probe to new physics beyond SM
    - Large BR is predicted in many new physics models
      - SUSY-seesaw, SUSY-GUT…
- $\mu \rightarrow e\gamma$  decay





Normal muon decay (Michel decay)

Lepton flavors are conserved

 $V_{\mu}$ 

## $\mu \rightarrow ey \text{ search}$



- Existing experimental upper limit –  $\Re(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$  (90%CL) (1999, MEGA@LAMPF)
- A  $\mu \rightarrow e\gamma$  signal is a <u>clear evidence</u> for new physics
  - No SM background, no hadronic uncertainty.
- MEG aims at searching down to O(**10<sup>-13</sup>**)







Dominant



## **Requirements**



## - High intensity DC $\mu^+$ beam

- >10<sup>7</sup>/sec

## High rate tolerable detectors

- All of >10<sup>7</sup>/sec  $\mu^+$  generate e<sup>+</sup>
- Pileup of γs become a source of high energy BG

## High resolution detectors

- $\gamma$  energy measurement is the most important
- Angle and time measurements are also effective



## **The MEG Experiment**



- World's most intense **DC muon beam** @ PSI
- High-rate tolerable e<sup>+</sup> spectrometer with gradient B-field
- High performance γ-ray detector with Liquid Xenon



## **MEG History**



|      |            |                                          | First result (2008 data)<br>(Nucl.Phys.B834 1)<br>Sensitivity: <b>1</b> .3×10 <sup>-11</sup>                                              |
|------|------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1999 |            | Proposal                                 | 90% UL : <b>2.8×10</b> <sup>-11</sup>                                                                                                     |
|      |            | ··· R&D ···                              | This talk                                                                                                                                 |
| 2007 |            | Engineering run                          |                                                                                                                                           |
| 2008 | Sep – Dec  | 1 <sup>st</sup> physics data acquisitio  | n Preliminary result of 2009                                                                                                              |
| 2009 |            | Analysis of 2008 data                    | (presented in conferences)<br>Sensitivity : <b>6.1×10<sup>-12</sup></b>                                                                   |
|      |            | Hardware upgrade                         | 90% UL : <b>1.5×10</b> <sup>-11</sup>                                                                                                     |
|      | Nov – Dec  | 2 <sup>nd</sup> physics data acquisition | on                                                                                                                                        |
| 2010 |            | Analysis of 2009 data                    |                                                                                                                                           |
|      | Aug – Oct  | 3 <sup>rd</sup> physics data acquisition | on 💦                                                                                                                                      |
| 2011 |            | Analysis of 2009&2010 d                  | ata                                                                                                                                       |
| now  | July – Nov | 4 <sup>th</sup> physics data acquisition | on                                                                                                                                        |
|      |            | <br>Final<br>(ar                         | result of 2009 & 2010<br>Xiv:11075547, accepted PRL)<br>Sensitivity : <b>1.6×10<sup>-12</sup></b><br>90% UL : <b>2.4×10<sup>-12</sup></b> |

#### 590 MeV 2.2mA 50MHz RF

MEGA used pulsed beam 6% duty cycle Instant intensity 2.6x10<sup>8</sup> average 1.3x10<sup>7</sup>

MEG Duty cycle 100%

instant=ave  $3 \times 10^7 \mu^+/s$ 

#### Provides world's most intense DC muon beam

(surface muon)

JPS 2011 Autumn, 16/Sep/2011

Switzerland

. . . . . . . . . .

## Liquid xenon y-ray detector



- 900 liter liquid xenon
  - Scintillation medium
    - High light yield (75% of NaI(Tl))
    - Fast response ( $\tau_{decay}$ =45ns)
    - High stopping power ( $X_0=2.8$ cm)
    - No self-absorption
    - Uniform, no-aging
  - Challenges
    - Vacuum ultra-violet (178nm)
    - Low temperature (165K)
    - Need high purity
  - No segmentation
- Measure energy, position, time at once

(@52.8MeV)

- $-\sigma_{E}/E \sim 2\%$
- $\sigma_t$  = 80 psec
- $-\sigma_x = 5-6 \text{ mm}$

Active volume ~800/  $\Omega/4\pi = 11\%$ 846 PMTs aI(TI))





## <u>Cryostat</u>







Entrance window with honeycomb structure

2 layers of vacuum-tight cryostat Thin window for  $\boldsymbol{\gamma}$  entrance face



JPS 2011 Autumn, 16/Sep/2011



## **PMT installation**



#### 2"PMT developed for MEG

- Quartz window for VUV
- K-Cs-Sb photocathode
- Al strip on photocathode
- Metal-channel dynodes
- Zener diode at last step of Bleeder



JPS 2011 Autumn, 16/Sep/2011

Yusuke UCHIYAMA, the Univ

3 200







## Xenon system





JPS 2011 Autumn, 16/Sep/2011

## **Xenon system: Purification**





JPS 2011 Autumn, 16/Sep/2011

. . . . . . . . .

#### <u>e<sup>+</sup> spectrometer</u>





JPS 2011 Autumn, 16/Sep/2011

## **Drift chamber**





- 16 modules
  - Aligned concentrically (10.5°)
  - 2 layers per module
- 12.5 µm thick cathode foil with vernier pattern
- He:ethane = 50:50
- <u>Ultra low mass chamber</u>
  - Multiple scatter limits the performance
  - Suppress γ BG source
  - In total, along e<sup>+</sup> trajectory  $\sim 2.0 \times 10^{-3} X_0$
- Tracking with Kalman filter
  - Reconstruct e<sup>+</sup> momentum vector on target
    - $\sigma_{\rm E}/{\rm E} = 0.7 \ \%$
    - $\sigma_{\theta} \sim 18 \text{ mrad}$
    - $\sigma_\phi \sim 10 \text{ mrad}$



## **Timing counter**





- e<sup>+</sup> time measured by a set of timing counter
  - Two layers of plastic scintillator
  - (z-measuring fiber counter is not used in 2008)
  - $\sigma_{TC} \sim 65$  psec
- Reconstruct muon decay time
  - TC hit time e<sup>+</sup> flight length from DC
  - LXe hit time  $\gamma$  flight length (line)
  - $t_{e\gamma} = t_{e+} t_{\gamma}$
- Total resolution :  $\sigma_{tey} = 148 \text{ psec}$





## **Calibration1: CW**



- **17.6 MeV \gamma from Li(p,\gamma)Be reaction** 
  - Prepared dedicated Cockcroft-Walton accelerator
  - Shoot *p* beam from opposite side
  - Easy to switch (20min)
  - 3 times per week
- Non-uniformity calibration
- Light yield monitor





p beam



## Calibration2: $\pi^0$

- 55MeV high-energy  $\gamma$  from  $\pi^0$  decay
  - Evaluate resolutions
    - (energy, position, time)
  - Calibrate energy scale
- $\pi^{-}$  from same beamline as  $\mu^{+}$ 
  - LH<sub>2</sub> target
  - Take several days for setup
  - Conducted at beg. & end of physics run
- Tag back-to-back ys with NaI detector







# **RUN 2008**

JPS 2011 Autumn, 16/Sep/2011



2008







## 2008 Data



- The first 3 months data of MEG
  - Normal physics data-taking
    - MEG run w/ 11 mixed trigger
    - Daily LED calibration w/ beam
    - 3/week Full calibration sets
- Stopping rate $3.0 \times 10^7 \mu^+$ /secTrigger rate6.5 Hz, 9 MB/secLive time $3.3 \times 10^6 \text{ sec } (85\%)$ Total  $\mu^+$  on target $9.5 \times 10^{13}$
- 24h/week RD (low-intensity) run



## DCH discharge problem



- DCH frequently discharged
  - After a few months,
    - Gradually some chambers started to discharge
  - Inside magnet is filled with pure-Helium
    - DCH-outside is exposed in He atmosphere (HV line)
- Finally, out of 32 planes,
  - 18 planes were operational
  - Only 12 planes worked at nominal voltage

Degradation of e<sup>+</sup> measurement (**efficiency** / resolution)



JPS 2011 Autumn, 16/Sep/2011

## Variation of LXe light yield



- Lower than expected
- Recover by purification
- Decrease by (possible) leak

Confirmed light yield monitoring using several kinds of daily calibration

We decided to continue purification in parallel with DAQ (gas phase: continuously, liquid phase: intermittently(beam shutdown))



# **Analysis**

JPS 2011 Autumn, 16/Sep/2011





## **Analysis**

- Blind analysis
  - Hidden parameters:  $(\mathbf{E}_{\mathbf{y}}, \mathbf{t}_{\mathbf{ey}})$
  - Any study (calibration, BG estimation, performance evaluation) can be done with events outside the box
- Sideband
  - Accidental BG can be studied with off-time sideband
  - Radiative muon decay(RMD) can be studied with lowenergy E<sub>y</sub> sideband
- Normalization
  - Count unbiased Michel sample mixed in physics data
- Wide analysis region for likelihood fitting
  - Estimate Sig & BG simultaneously.
  - PDFs mostly from data





## Likelihood fit





- Extended unbinned maximum likelihood fit on number of events
  - 3 fit parameters :  $(N_{sigr} N_{RMDr} N_{BG}), N = N_{sig} + N_{RMD} + N_{BG}$
  - 5 observables :  $\vec{x} = (E_{\gamma \gamma} E_{e\gamma} t_{e\gamma} \theta_{e\gamma} \phi_{e\gamma})$

relative angle (inverse  $e^+$  direction –  $\gamma$  direction )

- Probability density functions (PDFs) for each event type (S, R, B)
  - Extract PDF from data
- Fit in wide region ( $10\sigma$ ) to extract signal & background simultaneously

## Gamma energy

- Calibrate position-dependent response using CW-Li 17MeV  $\gamma$
- Measure response using  $\pi^0$ -55MeV  $\gamma$ 
  - extract position dependently
- Cross check with BG shape fit



Yusuke UCHIYAMA, the University of Tokyo

Entrance face

Response to

W-Li line

1.02

0.96

0.94

60

40

20

-20

-40







 Evaluate angular resolution using 2-turn events See difference of reconstructed angles by individual turns



(1<sup>st</sup> turn)



- Reconstruct  $\mu$ -decay vertex as a point crossing e<sup>+</sup> track and target plane
- Evaluate resolution with
  - Using holes on target
  - Using 2-turn events

$$\sigma_x = 4.5 \text{ mm}$$
  
 $\sigma_y = 3.2 \text{ mm}$ 



## **Gamma position**

- Evaluate resolution with  $\pi^0$  run with Pb bricks
  - Shadow of brick gives resolution and bias
  - Results
    - σxy = 4.5~5mm, bias(RMS)=0.7mm
    - Compared with MC
      - 1.8mm worse (in quadrature) than MC ( $\leftarrow$  QE error)
- Detailed study with MC
  - Take in the difference
  - Resolution dependence
    on relative position to PM<sup>300</sup>

$$\sigma_{xy} \sim 5 \text{ mm}$$
  
 $\sigma_r \sim 6 \text{ mm}$ 

JPS 2011 Autumn, 16/Sep/2011













- Not able to measure gamma direction
  - Direction of the line b/w  $\mu$ -vertex and  $\gamma$  interaction point
  - Combined resolution:  $\sigma_{\theta e \gamma} = 20.6 \text{mrad}, \sigma_{\phi e \gamma} = 13.9 \text{mrad}$
#### **Time resolution**

- Reconstruct muon decay time
  - TC hit time e<sup>+</sup> flight length from DC
  - LXe hit time  $\gamma$  flight length (line)

$$-\mathbf{t}_{\mathrm{e}\gamma} = \mathbf{t}_{\mathrm{e}+} - \mathbf{t}_{\gamma}$$

- Observe RMD peak in normal intensity data
- Total resolution
  - small correction for  $E_v$

- 
$$\sigma_{tey} = 148\pm27$$
 ps

RMD peak is a powerful time calibration tool, measure all detector contribution at once, in situ monitoring





Rate (Hz /0.50 MeV

## **Background I**

- Background rate
  - Measure with self-trigger data
  - Compare with MC
    - Reproduce well the rate and shape





MC 3.7×10<sup>7</sup> µ+decay/sec Convolve response Uncertainty ~7%

JPS 2011 Autumn, 16/Sep/2011

## **Background II**



- Background level
  - Difficult to get feeling of BG with likelihood analysis
  - → Define signal box by resolution (1.64 $\sigma$ )
  - Accidental BG
    - Estimate using sideband
    - Wider time & angle window
    - 0.95±0.15 events
  - RMD events
    - 0.02±0.004 events



\* wider window for angle



## **Background III**



Obtain BG PDF from time-sideband data



- Smooth function of fitted MC spectrum response as PDF
  - Reduce systematic error from low statistics at high energy
- Position dependent ( $\gamma$ )

JPS 2011 Autumn, 16/Sep/2011 Yusu

## Number of muons



- Normalize signal events by # of muon decays counted in control samples
  - Normalization channel 1: Count Michel e+
    - Unbiased Michel trigger data mixed in physics run

$$\frac{\mathcal{B}_{e\gamma}}{\mathcal{B}_{e\nu\overline{\nu}}} = \frac{N_{sig}}{N_{MD}} \times \frac{f_{e\nu\overline{\nu}}^E}{P_{e\nu\overline{\nu}}} \times \frac{\epsilon_{e\nu\overline{\nu}}^{trig}}{\epsilon_{e\gamma}^{trig}} \times \frac{A_{e\nu\overline{\nu}}^{TIC}}{A_{e\gamma}^{TIC}} \times \frac{\epsilon_{e\nu\overline{\nu}}^{DCH}}{\epsilon_{e\gamma}^{DCH}} \times \frac{1}{\epsilon_{e\gamma}^{\gamma}} \times \frac{1}{A_{e\gamma}^{\gamma}}$$

• Insensitive to beam-rate or detector-condition variations

Normalization factor

$$\mathscr{B}(\mu^+ \rightarrow e^+ \gamma) = N_{sig} / (5.2 \pm 0.5) \times 10^{11}$$

- Cross check with other methods
  - channel 2: Count RMD events
    - In  $E_{\gamma}$ -sideband
  - channel 3: Accidental BG rate
    - In time-sideband
  - Those three methods are complementary
    - Most of the systematics are independent.
    - Consistency check  $\rightarrow$  good agreement

 Table 8.2:
 Summary of normalization.

|               | Michel        | RD            | BG            |
|---------------|---------------|---------------|---------------|
| $k (10^{11})$ | $5.2 \pm 0.5$ | $4.4 \pm 1.1$ | $5.2 \pm 0.8$ |



JPS 2011 Autumn, 16/Sep/2011

## **Gamma efficiency**

- Detection efficiency
  - $\pi^0 2\gamma$ : NaI single trigger
  - MC
  - µ data single spectrum
  - In analysis region (46<E<sub>v</sub><60 MeV)</li>
    - $\varepsilon_{det} = 66\%$
- Analysis efficiency
  - Inefficiency by cuts
    - (pileup cut, CR cut)
    - 5.5%

$$\epsilon_{\gamma} = (63 \pm 4) \%$$

JPS 2011 Autumn, 16/Sep/2011



#### **Sensitivity**



- **Expected upper limit (90%CL)** on ensemble of toy-experiments
  - Null signal assumption
  - Toy-experiment: generate events with obtained PDFs
  - Repeat toy-experiments and calculate UL in the same way as real data



c.f. Existing best upper limit:  $1.2 \times 10^{-11}$ 

JPS 2011 Autumn, 16/Sep/2011



#### Sideband analysis



Analyzed real data but off-timing







## **Result**

Opened the blind box  $\cdots$ 

JPS 2011 Autumn, 16/Sep/2011



## Fit to data (projected distributions)

**ה ה ה ה ה ה ה ה ה ה ה ה ה** ה **ה** 

**Events / (0.0067 rad)** 

۲

**ה ה ה ה ה** 



## Fit to data (likelihood function)

**ה ה ה ה ה ה** 





- Set confidence region with Frequentist approach
  - Feldman-Cousins method in  $(N_{sigr}, N_{RMD})$  2D plane



- 90% confidence interval contains  $N_{sig} = 0$
- The upper limit is given as  $N_{sig} < 14.5$

JPS 2011 Autumn, 16/Sep/2011

## **Systematic uncertainties**



- Estimate the impact of systematics by performing fit with alternative parameters
  - See the variation of the best-fit  $N_{sig}$  value
  - UL : 14.5  $\rightarrow$  14.7



 Table 8.4:
 Summary of systematic uncertainties.

|                                                                                                                   | factor                                          | estimated value    | impact on $N_{sig}$ |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|---------------------|
| Precision of 55MeV peak :0.08%<br>Trace of light yield :0.3%<br>Uncert of gain shift corr. : 0.2%<br>Total : 0.4% | Gamma-ray energy scale                          | 0.4%               | 0.4                 |
|                                                                                                                   | Gamma-ray energy resolution                     | 10 - 15%           | negligible          |
|                                                                                                                   | Positron spectrum                               | _1                 | 1.14                |
|                                                                                                                   | Angular resolution                              | 1 mrad             | 0.35                |
|                                                                                                                   | Time resolution                                 | $17 \mathrm{\ ps}$ | negligible          |
|                                                                                                                   | Time center                                     | $16 \mathrm{\ ps}$ | negligible          |
|                                                                                                                   | Normalization factor                            | 10%                | —                   |
| Positron: 7%                                                                                                      | 1                                               |                    |                     |
| JPS 2011 Autumn, 16/Se                                                                                            | <sup>1</sup> given as alternative parameter set |                    |                     |

## **Discussion**

Why the obtained UL is much larger than the sensitivity?



#### **Candidate events**



Table 8.6: List of events with large likelihood ratio S/B.

| Run/Event  | $E_e  ({\rm MeV})$ | $E_{\gamma}$ (MeV) | $t_{e\gamma}$ (ps) | $\theta_{e\gamma}$ (mrad) | $\phi_{ex}$ (mrad) | S/B    |
|------------|--------------------|--------------------|--------------------|---------------------------|--------------------|--------|
| 35909/1908 | 52.7               | 54.1               | -262               | 9.5                       | 6.3                | 1206.6 |
| 34221/2058 | 52.6               | 50.8               | 60.2               | 3.3                       | 1.8                | 303.2  |
| 30109/1371 | 52.5               | 51.6               | -50.8              | -11.9                     | 11.3               | 271.9  |
| 40330/853  | 53.2               | 50.7               | 82.0               | -28.6                     | -2.3               | 250.4  |
| 40077/1210 | 53.8               | 50.1               | 143.6              | 3.0                       | 14.4               | 128.6  |

- Rank events by event-type likelihood ratio S/B
- Found the most signal-like event is double-pileup event
  - Pileup elimination only worked on the 1<sup>st</sup> pileup  $\gamma$
  - If we eliminate the  $2^{nd}$  one as well, then  $E_v$  was 47.7 MeV



## Impact of the candidate event MEG

70

60

50

Number of RD events

- Investigate impact of the event
  - Set lower threshold for pileup search
  - to eliminate the 2<sup>nd</sup> pileup
  - Repeat the analysis

$$\vec{\theta}_{best} = \left(4.3^{+3.9}_{-2.9}, 25^{+17}_{-16}, 1159^{+38}_{-37}\right)$$
  
$$\vec{\theta}_{best} = \left(2.0^{+3.8}, 24^{+17}_{16}, 1119^{+37}_{-37}\right).$$

*N<sub>sig</sub>* UL becomes 11.4 (←14.5)
 Probability of *N<sub>sig</sub>* UL > 11.4 is 5%

JPS 2011 Autumn, 16/Sep/2011

## Cut analysis

- For cross-check and better understanding BG, performed cut analysis
  - Two signal boxes
    - A : 1.64σ box
    - B ; Optimized box

 Table 8.5:
 Summary of cut analyses.

|                                   | $1.64\sigma$ box (A) |                        | optimized box (B) |                        |
|-----------------------------------|----------------------|------------------------|-------------------|------------------------|
|                                   | range                | $(\epsilon_{\rm rel})$ | range             | $(\epsilon_{\rm rel})$ |
| $E_e \ (MeV)$                     | [52.2, 53.8]         | (0.85)                 | [52.0, 56.0]      | (0.92)                 |
| $E_{\gamma} \; (\mathrm{MeV})$    | [51.0, 54.6]         | (0.64)                 | [51.0, 56.0]      | (0.70)                 |
| $ t_{e\gamma} $ (ps)              | < 242                | (0.90)                 | < 273             | (0.94)                 |
| $\phi - \Theta_{e\gamma} $ (mrad) | < 33                 | (0.80)                 | < 42              | (0.94)                 |
| SES $(10^{-12})$                  | 5.0                  | (0.39)                 | 3.5               | (0.56)                 |
| $N_{BG}^{\exp} + N_{RD}^{\exp}$   | 0.95 + 0.02          |                        | 2.08 + 0.03       |                        |
| $N^{\rm obs}$                     | 1                    |                        | 2                 |                        |
| Upper limit $(10^{-11})$          | 1.68                 |                        | 1.32              |                        |

#### BG are well consistent with the expectations

| $\mathcal{B}_{\mathrm{boxA}}$ | < | $1.7 \times 10^{-11}$ , |
|-------------------------------|---|-------------------------|
| $\mathcal{B}_{\mathrm{boxB}}$ | < | $1.3 \times 10^{-11}$   |

JPS 2011 Autumn, 10/3ep/2011

тизике осНІҮАМА, the l



#### **Discussion**



- The large UL is considered to be statistical fluctuation
  - A very rare event is observed accidentally
  - If we set different pileup threshold, then the result is well consistent with
    - Null result
    - Sensitivity

JPS 2011 Autumn, 16/S

- Cut analysis
- Nevertheless, the obtained UL is statistically valid without any bias

| · · · · · ·                          | ~                                                           |
|--------------------------------------|-------------------------------------------------------------|
|                                      | $\mathcal{B}$ upper limit <sup>1</sup> (10 <sup>-11</sup> ) |
| Analysis window                      | 2.8                                                         |
| Analysis window (tighter pileup cut) | 2.2                                                         |
| Cut analysis (optimized box)         | 1.3                                                         |
| Sideband $(t_{e\gamma} > 0)$         | 2.0                                                         |
| Sideband $(t_{e\gamma} < 0)$         | 0.89                                                        |
| Sensitivity                          | 1.3                                                         |

 Table 8.7:
 Summary of the upper limit and sensitivity.

<sup>1</sup>before incorporating systematic uncertainties.

#### MEG RUN2008 result



# $\mathcal{B}(\mu^+ \to e^+ \gamma) < 2.8 \times 10^{-11}$

(90 % C.L.)

- MEGA UL : 1.2×10<sup>-11</sup>
- MEG2008 sensitivity : 1.3×10<sup>-11</sup>



JPS 2011 Autumn, 16/Sep/2011

#### **Status & prospect**

- Before 2009 run,
  - solved DCH discharge problem
  - reached full LXe light yield  $\rightarrow$  stable
  - improved trigger efficiency (66→91%)
- Many improvement in analysis
  - For the latest result, see talks in this meeting
    - 17pSE2-3: LXe detector
    - 17pSH1: e<sup>+</sup> spectrometer
    - 19aSD1: Detector performance
    - 19aSD2: Physics analysis & result 4.E+12
- MEG is running
  - Run at least until the end of 2012
  - to reach our goal of sensitivity a few  $\times 10^{-13}$



JPS 2011 Autumn, 16/Sep/2011

#### **Conclusion**



- We started MEG data taking in Sep. 2008.
- Searched for lepton-flavor violating decay  $\mu^+{\rightarrow}e^+\gamma$  with sensitivity  $1.3{\times}10^{\text{-11}}$ 
  - Observed some excess, but still consistent with null signal
- Set an upper limit:

#### $\mathcal{B}(\mu^+ \to e^+ \gamma) \le 2.8 \times 10^{-11}$ @ 90% C.L.

- The first result of MEG experiment
- Could not give a record limit, but set an independent limit with a comparable sensitivity search
- MEG is putting more & more stringent limit on new physics, with possibility of the discovery.





**ה ה ה ה ה ה ה ה ה ה ה ה ה ה** ה **ה** 





## **Calibration1: PMT**

- LED,  $\alpha$  source inside LXe volume
  - frequent & precise calibration
    - daily











## **Fotal number of photoelectrons** 650 645 640 635 630 625



- Time scale of some dozens of minutes
- Rate dependent
- However, the amount of the shift is stable over long period

Date

December  $\pi^0$  run

- Measure LED during beam on, correct with beam info
  - Correct with precision of 0.1 %
  - However, shift in  $\pi^0$  run was unknown
    - $\rightarrow$  Uncertainty of energy scale

JPS 2011 Autumn, 16/Sep/2011 Yusuke UCHIYAMA, the University of Tokyo

#### **Time measurement**

- Monitor & correct  $t_0$  with RMD peak in low intensity run
  - 24 h/week, ×25 lower  $\mu^+$  intensity
  - Much better S/N





Cvents /(0.080

#### Observe drift of t<sub>0</sub>

- due to change of LXe pulse shape
- as improvement of purity



JPS 2011 Autumn, 16/Sep/2011

#### **Confidence Region**

- Calculate 2D confidence region in (N<sub>sig</sub>,N<sub>RD</sub>) with **Feldman-Cousins method** 
  - At each point (N<sub>sig</sub>, N<sub>RD</sub>), conduct many toyMC experiments
  - Calculate <u>likelihood ratio</u> for each experiment
    - $R_{data} = L_{data,max} / L_{data}(N_{sig}, N_{RD})$
    - $R_{MC} = L_{MC,max} / L_{MC}(N_{sig}, N_{RD})$
  - If the number of experiments with  $R_{data} < R_{MC}$  is less than 90%, then the point  $(N_{sig}, N_{RD})$  is in the 90% confidence region
- Found there is no correlation between  $(N_{sig}, N_{RD})$  from the shape of likelihood function
- Upper limit (or confidence interval) on N<sub>sig</sub> is on the best fit N<sub>RD</sub>

- ★ Best fit of data in likelihood fit
- Sample point
- Best fit of simulated experiment Taking the sample point as true point



 $R_c$ 



#### **MEG Detector**



63



JPS 2011 Autumn, 16/Sep/2011

#### Liquid Xenon Gamma-ray Detector

Fig.3.25



JPS 2011 Autumn, 16/Sep/2011

#### **Xenon Scintillation**

- De-excitation process (fast)
  - Xe + Xe<sup>\*</sup>  $\rightarrow$  Xe<sup>2</sup>\*  $\rightarrow$  2Xe + hv
- Recombination process (slow)
  - Xe<sup>+</sup> + Xe  $\rightarrow$  Xe<sub>2</sub><sup>+</sup>
  - $Xe_2^+ + e^- \rightarrow Xe^{**} + Xe$
  - Xe<sup>\*\*</sup> → Xe<sup>\*</sup> + heat
  - Xe + Xe<sup>\*</sup>  $\rightarrow$  Xe<sup>2\*</sup>  $\rightarrow$  2Xe + hv



#### **Absorption**

JPS 2011 Autumn, 16/Sep/2011

#### <u>Gamma Energy I</u>

In front of a PMT

Fig.6.10(b) Energy response map (before corr.) Reconstruction cm Sum of PMT outputs 60 - Correction of non-uniformity (collection efficiency) • Use 17.6MeV  $\gamma$  from Li(p, $\gamma$ )Be reaction 40 - Uniformly illuminates the detector. Φ Treatment of shallow events 20 Low resolution at shallow part Shower escape 0.98Large variation of photon collection, Photon leakage 0 – Detector entrance face - Saturation of signal (dyn.range of elec.) But want to use for statistics. 0.96 Recovered saturation using waveform -20 Correct photon collection efficiency by calculating 0.94solid angle -40 0.92-60 0.9 -20 -1010 20 [cm]

intermediate

#### Gamma Energy II

- Recover of pileup events
  - Not discard pileup events, but use with unfolding.
  - Improve efficiency





ID pileup → reconstruct energy using region without pileup → replace
 PMT outputs for pileup region with estimated charge → then normal reconstruction



#### Gamma Energy II

- Recover of pileup events
  - Not discard pileup events, but use with unfolding.
  - Improve efficiency





 ID pileup → reconstruct energy using region without pileup → replace PMT outputs for pileup region with estimated charge → then normal reconstruction





#### <u>Gamma Timing I</u>

- Reconstruction
  - Subtract scinti.-photon propagation time from PMT hit time.

 $t_{hit,i} = t_{PMT,i} - t_{delay,i} - t_{offset,i},$ 

 $t_{delay} = t_{prop}(d, v_{eff}) + t_{indir}(\eta) + t_{walk}(N_{pe}).$ 

- Combine a lot of measurement by different PMTs (~150PMTs) ( $\chi^2$  fit).





JPS 2011 Autumn, 16/Sep/2011

#### <u>Gamma Timing I</u>

- Reconstruction
  - Subtract scinti.-photon propagation time from PMT hit time.

$$t_{hit,i} = t_{PMT,i} - t_{delay,i} - t_{offset,i},$$

$$t_{delay} = t_{prop}(d, v_{eff}) + t_{indir}(\eta) + t_{walk}(N_{pe}).$$

- Combine a lot of measurement by different PMTs (~150PMTs) ( $\chi^2$  fit). **Disentangle those three terms by looking at energy dependence** 



#### "COBRA" Magnet

- Superconducting solenoid form highly gradient magnetic field
  - Center 1.27 T → edge 0.49 T








# **DCH Design**





Fig.3.17 Vernier Fig.3.17 Vernier anode readout vernier pad induced positive charge

2 layers staggered by half cell 9 drift-cells in 1 layer

Open-frame structure Form cell only with cathode foils

12.5µm cathode foil Vernier pattern  $\rightarrow$  z reconstruction

JPS 2011 Autumn, 16/Sep/2011



### **'Surface muon' Beam Transport System**



- Surface  $\mu^+$ :  $\mu^+$  originating from pion stopped on the surface of prod. target
  - Extract at 175° from the primary p beam
  - Low momentum(29MeV/C) with small variance  $\mu^+$  beam
- Through the beam transport system
  - Separate e<sup>+</sup> · degrade · tune beam profile
- 3x10<sup>7</sup>µ<sup>+</sup>/sec stop on target
  - 10mm spot size
  - 200µm polyethylene film target , placed at 20.5°slant angle from beam-axis
    - Suppression of scatter & BG VS stopping power

JPS 2011 Autumn, 16/Sep/2011 Yusuke UCHIYA

# **Readout Electronics**

- Record <u>waveform</u> from all sub-detectors (no ADC,TDC)
  - DRS chip (Domino Ring Sampler)
    - Up to 5GSPS, 1024cell, 8ch/chip
  - Sampling speed : 1.6GHz for LXe&TIC, 500MHz for DCH



JPS 2011 Autumn, 16/Sep/2011

#### **Trigger**



- FPGA-FADC architecture
  - 100MHz FADC on VME boards
- MEG trigger
  - γ energy
  - e<sup>+</sup>-γ coincidence
  - e<sup>+</sup>-γ direction match (back-to-back)
    - Max output PMT in LXe
    - TC hit position
- In addition, 10 trigger types are mixed in normal data taking
  - Calibration, normalization

|   | Beam rate                  | 3x10 <sup>7</sup> s <sup>-1</sup> |
|---|----------------------------|-----------------------------------|
| 5 | Fast LXe Q sum<br>(>40MeV) | 2x10 <sup>3</sup> s <sup>-1</sup> |
|   | Time coincidence           | 100s <sup>-1</sup>                |
|   | Direction match            | 10s <sup>-1</sup>                 |



# **Summary of performance**



|                                              | 2009                                        | 2010                                       |
|----------------------------------------------|---------------------------------------------|--------------------------------------------|
| γ energy                                     | 1.9%( <i>w</i> >2cm) 2.4%(( <i>w</i> <2cm)  | 1.9%( <i>w</i> ≥2cm) 2.4%(( <i>w</i> <2cm) |
| $\gamma$ timing                              | 96ps                                        | 67ps                                       |
| $\gamma$ position                            | 5mm( <i>u</i> , <i>v</i> ), 6mm( <i>w</i> ) | 5mm( <i>u,v</i> ), 6mm( <i>w</i> )         |
| $\gamma$ efficiency <sup>†</sup>             | 58%                                         | 59%                                        |
| $e^+$ timing                                 | 107ps                                       | 107ps                                      |
| $e^+$ energy                                 | 0.31MeV (core 80%)                          | 0.32MeV (core 79%)                         |
| $e^{\scriptscriptstyle +}$ angle ( $	heta$ ) | 9.4mrad                                     | 11.0mrad                                   |
| $e^{+}$ angle ( $\phi$ )                     | 6.7mrad                                     | 7.2mrad                                    |
| <i>e</i> <sup>+</sup> vertex ( <i>Z</i> / Y) | 1.5mm/1.1mm(core)                           | 2.0mm/1.1mm(core)                          |
| $e^+$ efficiency                             | 40%                                         | 34%                                        |
| $e^+ - \gamma$ timing                        | 146ps                                       | 122ps                                      |
| Trigger efficiency                           | 91%                                         | 92%                                        |
| $e^+ - \gamma$ angle ( $	heta$ )             | 14.5mrad                                    | 17.1mrad                                   |
| $e^+ - \gamma$ angle ( $\phi$ )              | 13.1mrad                                    | 14.0mrad                                   |
| Stopping $\mu$ rate                          | $2.9 \times 10^7 s^{-1}$                    | 2.9 × 10 <sup>7</sup> s <sup>−1</sup>      |
| DAQ time/ Real time                          | 35days/43days                               | 56days/67days                              |
| Total $\mu$ stops on target                  | 6.5 × 10 <sup>13</sup>                      | 1.1 × 10 <sup>14</sup>                     |

e<sup>+</sup> tracking slightly worse in 2010 due to noise problem

improvement by waveform digitizer upgrade in 2010

```
: University of Tokyo
```

# (p,y) reaction



>11.7 MeV

- Makes us of a Cockcroft-Walton accelerator to deliver tunableenergy protons to a  $Li_2B_4O_7$  target
  - Li: high rate, higher energy photon
  - B: two (lower energy) time-coincident photons >16.1 MeV

| Reaction   | Eres    | $\sigma_{res}$        | γ-lines               |         |
|------------|---------|-----------------------|-----------------------|---------|
| Li(p, y)Be | 440 keV | 5 mb                  | (17.6, 14.6) MeV      | 4.4 MeV |
| B(p, y)C   | 163 keV | 2 10 <sup>-1</sup> mb | (4.4, 11.7, 16.1) MeV |         |







# **Positron Efficiency**

- e<sup>+</sup> detection efficiency
  - $\varepsilon_e = \varepsilon_{DCH} \times A_{DCH-TIC}$ 
    - $\epsilon_{DCH}$ : tracking efficiency. Measure with TIC-self trigger data.
    - A<sub>DCH-TIC</sub>: DCH-TIC matching probability. Make inefficiency if e<sup>+</sup> interacts with material and annihilates or changes its direction largely.
      Measure with DCH-self trigger data.
- ε<sub>e</sub> decreased gradually during the run
  - DCH discharge problem
- Expectation (full DCH) : ~40% (= 80x50)

$$\epsilon_{e} = (37 \times 38) = 14\%$$

JPS 2011 Autumn, 16/Sep/2011

