液体キセノン中のシンチレーション光速度の測定

東京大学素粒子物理国際研究センター 大谷航 他 MEGコラボレーション 2010年3月20日 日本物理学会第65回年次大会 岡山大学津島キャンパス

MEG LXe y-Detector

- Liquid xenon γ-detector for MEG experiment
 - World's largest LXe scintillation detector
 - C-shape 900L-LXe is surrounded by 846PMTs.
- Detector performance optimization requires correct understanding of optical property of LXe.
 - Absorption, scattering, reflection, refractive index, speed of light, ...
- Large scale of MEG LXe detector would enable to directly measure speed of light.

Speed of Scintillation Light

- Scintillation photons measured in our detector should fly at group velocity instead of phase velocity.
 - **Phase velocity** : $v = c / n = 1.83 \times 10^{10}$ cm/sec
 - **Group velocity**: $v = c / n_g = c / (n \lambda dn/d\lambda) = c / n c / (\lambda dn/d\lambda)$

Speed of Scintillation Light

- Group velocity of LXe scintillation light
 - Average : 1.04×10¹⁰ cm/sec
 - Peak : 1.10×10¹⁰ cm/sec

Measurement in LXe Detector

- Alpha spot-sources on thin tungsten wires stretched in LXe to calibrate and monitor PMTs in MEG experiment.
- Can be used as spot light source for speed measurement
 ²⁴¹Am spot-source on 100μm-Φ W wire
 Reconstructed position of alpha event

Measurement in LXe Detector

- Measure time-distance correlation using different alpha sources on a wire.
- Use only PMTs around wire end to minimize systematic effect due to reflection and scattering

Measurement in LXe Detector

- Take difference bw / a pair of PMTs facing each other such that same events in reconstructed ring can be selected.
- Slope in time-distance correlation is independent of time offset in each PMT.

Analysis

- Data sample
 - alpha source data taken during MEG physics run 2009
- PMT time is measured with template waveform fitting.
- Measured time difference shows wide and asymmetric distribution.
- Peak time is used for speed measurement.

Time Distribution

Wide and asymmetric distribution

- Wavelength distribution
- Timing resolution of waveform analysis
- Effect of reflection and scattering
- Distribution is reproduced in MC simulation.

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

~10 % lower than expected

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

~10 % lower than expected

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

~10 % lower than expected

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

~10 % lower than expected

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

- Clear liner correlation bw / distance and time difference
- Measured speed: 0.99×10¹⁰ cm/sec

~10 % lower than expected

Data sample	Speed [cm/s]	Ratio to expectation
Oct. 2008	0.9 × 0 ¹⁰	0.83
Dec. 2008	0.89×10 ¹⁰	0.81
Dec. 2008 (high PMT gain)	0.85×10 ¹⁰	0.77
Dec. 2009 (new digitizer)	0.99×10 ¹⁰	0.90
Dec. 2009 (new digitizer+high gain)	0.99×10 ¹⁰	0.90
MC	0101×80.1	0.98
MC w/o scattering and reflection	1.14×10 ¹⁰	1.04

Several data samples with different conditions are analyzed.

 $W V_{expected} \sim V_{MC} > V_{2009} > V_{2008}$

LXe light yield in 2009 is 40% higher than in 2008.

How to Interpret Discrepancy?

- Possible systematics in the measurement
 - Time walk effect
 - Difference of waveform digitizer
 - Photoelectron statistics
 - Scattering/reflection
- Discrepancy seems too large to explain with systematics in the measurement.
- Speed is really changed?
 - Iffect of purity?
 - LXe light yield in 2009 is 40% higher than in 2008.
 - Refractive index or wavelength modified?
 - γ -timing reconstruction is optimized at ~0.8×10¹⁰ cm/sec.

How to Interpret Discrepancy?

Possible systematics in the measurement

- LXe light yield in 2009 is 40% higher than in 2008.
- Refractive index or wavelength modified?
- γ-timing reconstruction is optimized at ~0.8×10¹⁰ cm/sec.

Summary

- Speed of scintillation light in LXe is measured with MEG LXe detector.
- Measurements give lower speed than expected, while measurement in MC shows a good agreement with expectation.
 - 10% lower in run 2009
 - 20% lower in run 2008
- Systematics in the measurement are being investigated, but discrepancy seems a bit too large to explain with systematics.
 Theoretical mechanism to change the speed is not understood yet.
- Same measurements are planned in GXe to validate the method.