MEG実験2008
液体キセノン検出器II
東京大学 素粒子物理国際研究センター
西村 康宏
他 MEGコラボレーション
Performance of liquid xenon detector

- Timing resolution
 - intrinsic timing resolution
 - absolute timing resolution
- Position resolution
 - compared with MC simulation
- Energy scale calibration
 - peak dependence and correction
- Energy resolution
 - resolution map on front face
 - resolution by position in a PMT lattice
 - resolution along depth
- Linearity and detection efficiency
- Summary in 2008
Intrinsic timing resolution

- PMTs are divided to 2 groups
 - top and bottom part around centre
 - and checked by some divisions
- The timing difference of 2 groups
 - $\sigma = 50 \sim 60$ ps @ 52.8MeV signal

Timing resolution depends on the number of photo electron, but the light yield is increasing.
Absolute timing resolution

- Use the time difference of 2γ from π^0 decay

- Reference counter opposite liquid xenon detector
 - difference of 2PMTs in the same plates and weighted average of time at 2 plastic scintillators
 - $\sigma_{\text{counter}} = 93\text{ps}$

- Timing in liquid xenon detector referred by reference counter
 - corrected by the charge of reference counter, sum charge of PMTs by each faces, time of flight, propagation time
 - $\sigma_{(T_{\text{exec}} - T_{\text{counter}})} = 150\text{ps}$
 - contains the spread of decay point in target $\sim 60\text{ps}$ and the effect of reference counter $\sim 93\text{ps}$

 $\sigma_t \sim 150 \Theta (93 \Theta 60) \sim 100\text{ ps}$

- Bad resolution of clock signal included but will be improved.
- The timing resolution between gamma ray and positron is estimated by radiative decay.

<table>
<thead>
<tr>
<th>χ^2</th>
<th>NDF</th>
<th>Width [MeV]</th>
<th>p0</th>
<th>Width [MeV]</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.794e-18</td>
<td>0</td>
<td>298.4 ± 71.12</td>
<td>60.92 ± 9.188</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Position reconstruction

• use lead collimator in π^0 run to estimate position resolution
 – in 55~83MeV range
 – collimator slit: 1cm thickness: 1.8cm
 – The effect of target size is not considered.
 • $\sigma_{xy} \sim 8$mm x 8mm
• position resolution along vertical direction
 – edge: ~ 0.52cm (~ 0.51cm in MC simulation)
 – slit: ~ 0.75cm (~ 0.70cm in MC simulation)

In MC the worse resolution of slits is due to the spread of true incidence point. Actual resolution excluded this spread of slit and edge is the same level.
 – position resolution along vertical $\sigma \sim 0.52$cm
Calibration of energy scale

• Energy is estimated by the number of scintillation photons
 – Energy = \(\sum (\text{weight} \times \frac{\text{PMT charge}}{\text{gain} / \text{Q.E.}}) \times \text{energy scale} \times \text{correction factor} \)
 – currently using fixed weight determined by the detector geometry
 – the improvement of energy reconstruction is in progress

• Energy scale
 – energy scale is determined by 55MeV gamma ray in \(\pi^0 \) run

• Correction by time, position, etc.
 – chase the change of the light yield of liquid xenon by various calibration for all the run
 – compensate the dependence by position
Non-uniformity

- Position dependence of 17.6MeV peak by Li

- Wrong Q.E. estimation may worse uniformity.

Liquid xenon detector

- This gap is due to the different energy reconstruction.
Improvement by non-uniformity

- checked 55MeV peak from π^0 decay after correction with 17.6MeV Li peak

- Peak distribution estimated by 1PMT region for all front face

- Energy resolution before and after position correction in the light blue region
 - Depth < 2cm
 - σ upper 3.4% -> 2.9%
 - FWHM 12.3% -> 8.8%
 - Depth > 2cm
 - σ upper 2.5% -> 2.3%
 - FWHM 6.7% -> 6.1%

Uniformity 1.6% -> 0.8%

still contains the change of light yield, gain aging effect
Energy resolution map @ 55MeV

- **corrections**
 - Gain shift correction
 - Light yield correction
 - No gain aging correction
 - No position correction

- **Energy resolution around 55MeV (over 2cm depth)**

 - σ_{upper}
 - FWHM

 \[\text{<FWHM>} \sim 6.4\% \\ \text{<}\sigma_{\text{upper}}\text{>} \sim 2.3\% \]

 - Energy resolution by 1PMT size window

 - blue : all region
 - red : in acceptance (46cm x 142cm)

 - Monte carlo simulation of 53MeV signal

 \[\text{<FWHM>} \sim 4.3\% \\ \text{<}\sigma_{\text{upper}}\text{>} \sim 1.2\% \]
Dependence on PMT positions

- cut by narrow window to see the effect of PMT position
 - over 2cm depth, 55MeV peak in \(\pi^0 \) run
- The peak is almost independent from the PMT position, but energy resolution is influenced by that.

- vertical direction

- horizontal direction
Depth dependence

- Without correction by depth
- Energy resolution depends on the reconstructed depth
 - 55MeV peak in π^0 run

- Energy resolution can be obtained by each position
 - by the position on front face, depth
Linearity / Efficiency

- Possible estimation of detection efficiency
 - 1. Monte Carlo simulation
 - 2. 2γ from π^0 decay
 - Tagged by opposite NaI detector
 - select events around 83MeV in NaI and count hits in Liquid xenon
 - Linearity check by C.W. and π^0 decay
 - Small non linearity was observed.
 - Using high pass filter for waveform
 - without depth correction
 - correction of saturation may be wrong
 - shower by different energy scale
 - No problem about non-linearity
 - calibrate signal region (53MeV) by 55MeV γ from π^0
Summary of detector performance in 2008

- Timing resolution ~ 100 ps
 - ~ 55 ps (intrinsic)
- Position resolution ~ 0.52cm
- Energy resolution @ 55MeV
 - mean: $\sigma_{\text{upper}} = 2.3\%$, FWHM = 6.4%
 - energy resolution is acquired by the incident position
- Current energy reconstruction has non-uniformity
 - make a flat by calibration such as
 - 17.6MeV LiF peak
 - 55MeV peak from π^0 decay
- Linearity and detection efficiency can be estimated
 - under study
- All analysis is in progress and will improve.
53MeV peak

- Energy calibration for MC will be ready
 - used 53 MeV signal about 2.2M events

- MC peak by position is different from actual position dependence.
- Energy calibration is possible by signal peak.
MC energy resolution sliced along u, v, w

- without position correction
Combined light yield history