MEG2008 データ解析：陽電子スペクトロメータ

西口 創 (KEK素核研)，他 MEG コラボレーション

JPS Autumn Meeting, 10-13/Sep./2009, Konan University
contents

- MEG e\(^+\) Spectrometer
- MEG Drift Chamber
- Run 2008
 - Problems
 - Performances
- Conclusion
MEG e^+ spectrometer
Requirements for Positron Spectrometer

- **Very high counting rate**
 - the most intense DC muon beam in the world
 - muon stopping rate: 3×10^7 muon/sec

- **Good momentum/position/timing resolution**
 - aiming excellent sensitivity
 - $\sim 1\%$ momentum resolution, 500μm position resolution for both direction (r,z) and 40 ps timing resolution

- **Low-mass material**
 - 52.8MeV/c positron can be affected by multiple Coulomb scattering easily
 - γ background generation should be suppressed as much as possible
MEG Positron Spectrometer

Solenoid
- superconducting solenoid gradient B-field (0.5-1.7 T)
- very thin conductor and cryostat wall (0.2X₀)

Drift Chamber
- segmented radially (16 sectors)
- helium:ethane (50:50)
- opened-frame
- very thin cathode foil with pads

Timing Counter
- 2-layers of scintillators
 - scintillator bars (outer)
 - scintillator fibres (inner)
MEG Drift Chamber

- Muon stopping target
- Radial segmented DC modules
- Extremely thin cathode foil
- Opened-frame structure
- Helium based gas
- Reduced readout electronics
- Helium filled inside solenoid
Run 2008
Spectrometer in 2008

- We had the first long term experiment (*physics data taking*) in 2008.

- Rough Time-line 2008:
 - **January - May**: *Drift Chamber Maintenance*
 - Repair work for bad cable connection
 - Modification to avoid discharge problem
 - **June - July**: *Installation and Commissioning Run*
 - Michel e^+ Run was performed for Calibration/Conditioning
 - **August**: *π^0→γγ Run*
 - Spectrometer was in Summer Vacation
 - **September - December**: *MEG Physics Run*
 - Problems: Discharge on DC, Noise on Fibre Counter, *etc.*
Several DCs were inactive...

- **Discharge** on DC happened frequently during Run2008.
- Discharge problem happened 2007 originally, it was fixed at the beginning of 2008, but slowly happened again.
- Finally, 18 planes were operational, only 12 planes were working with nominal voltage...(HV is applied to each plane individually; 32 planes)
Discharges

• Inside COBRA is filled with pure helium, then DC-outside is exposed in helium atmosphere.
• HV-tracer-line is partially naked to helium in 2007, then discharged...
• We made the protection for helium in 2008 maintenance period, but...
2008 Performances
Performance Evaluation

- Positron Spectrometer Performances
 - Momentum Resolution ; σE_{e^+}
 - Angular Resolution ; $\sigma \phi_e$, $\sigma \theta_e$
 - Vertex Resolution ; σ_x, σ_y

- Combined Performances (LXe Calorimeter + e$^+$ Spectrometer)
 - Opening Angle Resolution ; $\sigma \theta_{e\gamma}$, $\sigma \phi_{e\gamma}$
 - Timing Resolution ; $\sigma t_{e\gamma}$

- Spectrometer Efficiency ; ε_e

- Probability Density Function (PDF)
 - For the Likelihood Analysis
 - E_{e^+}, $\theta_{e\gamma}$, $\phi_{e\gamma}$, $t_{e\gamma}$: for Signal, Background, both
Momentum Resolution Estimation

- Momentum-Resolution function is represented by Triple-Gaussian
- Studied by mono-energetic e^+ in MC
- σ_{core}, σ_{out}, σ_{tail} and their fractions are referred as resolution

- Fitting the kinematical edge of Michel spectrum to the convolution of resolution function and (theoretical) response function

MC
- Mono-energy: 52.8 MeV/c
 - Inactive DCs
 - Lower HV
 - Noise
 - Air Doping
Momentum Resolution (Run2008)

- Obtained Resolution
 - $\sigma_{E_{\text{core}}}$ = 374 keV
 - $\text{frac}_{\text{core}}$ = 60%
 - $\sigma_{E_{\text{out}}}$ = 1.06 MeV
 - frac_{out} = 33%
 - $\sigma_{E_{\text{tail}}}$ = 2.00 MeV
 - $\text{frac}_{\text{tail}}$ = 7%
 - $\text{ave. } \sigma_E$ = 714 keV
 - $\sigma_E/E \sim 1.3\%$

Hajime NISHIGUCHI (KEK)
“MEG2008 Positron Spectrometer”
JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University
Angular Resolution (Run2008)

* Angular resolution is estimated by doubly curling track.
* Subtracted angular residual of each turn gives intrinsic angular resolution.

\[\sigma_\theta = 1.45 \text{ deg.} / \sqrt{2} \]
\[\approx 18 \text{ mrad.} \]

\[\sigma_\phi = 0.81 \text{ deg.} / \sqrt{2} \]
\[\approx 10 \text{ mrad.} \]

(*) N.B. Taking the z-axis as the beam-axis, \(\theta \) is defined as the polar angle, while \(\phi \) is the azimuthal angle.
Angular Resolution (Run2008)

- Angular resolution is estimated by doubly curling track.
- Subtracted angular residual of each turn gives intrinsic angular resolution.

\[\sigma_\theta = 1.45 \text{ deg.} / \sqrt{2} \approx 18 \text{ mrad.} \]

\[\sigma_\phi = 0.81 \text{ deg.} / \sqrt{2} \approx 10 \text{ mrad.} \]

(*) N.B. Taking the z-axis as the beam-axis, \(\theta \) is defined as the polar angle, while \(\phi \) is the azimuthal angle.
Vertex Resolution (Run2008)

* Vertex (muon decay position) Resolution can be evaluated by two way
 * (1) Fitting the image of hole / (2) Subtracting the double curing track
 * Both show consistent results; $\sigma_x \sim 4.5 \text{ mm}$ and $\sigma_y \sim 3.2 \text{ mm}$
* Liquid Xenon Detector knows only the incident position, not angle.

* Combined Angle Resolution: $\sigma_{\theta e\gamma} = 20.6 \text{ mrad.} / \sigma_{\phi e\gamma} = 13.9 \text{ mrad.}$
Timing Resolution (Run2008)

- Relative Timing \((e^+ / \gamma) \) in physics data shows Radiative Decay Peak on the accidentals.
- Positron timing is measured by TC and corrected by track length.
- Gamma-ray timing is corrected by ToF to the conversion point in LXe.
- Peak width is corrected by small energy dependence
 - \(\sigma t_{e\gamma} = 148 \text{ psec} \)

Hajime NISHIGUCHI (KEK) "MEG2008 Positron Spectrometer" JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University
Spectrometer Efficiency (Run2008)

- Spectrometer Efficiency ε_{e^+} consists of two efficiencies
 - Track Reconstruction ε_{DC}
 - affected by lack of hit
 - DC-TC matching ε_{DC-TC}
 - affected by material between DC-TC

 $\varepsilon_{e^+} = \varepsilon_{DC} \times \varepsilon_{DC-TC}$

- ε_{e^+} was degrading over physics-run period

Hajime NISHIGUCHI (KEK)
“MEG2008 Positron Spectrometer”
JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University
Background PDFs: $Ee^+, \theta_{e\gamma}, \phi_{e\gamma}$

- Background PDF (radiative muon decay and accidentals) are obtained by unbiased-trigger data. (Michel Trig. and RMD Trig.)
- Used by Physics Analysis

Next Talk
Even though we had worse performances than the design value, the performance of Run2008 was evaluated to perform physics analysis.

<table>
<thead>
<tr>
<th>Items</th>
<th>2008</th>
<th>2009 expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum Resolution; σE_{e^+}</td>
<td>$\sim 1.3%$</td>
<td>$\sim 0.9 %$</td>
</tr>
<tr>
<td>Angular Resolution; $\sigma \theta_e$, $\sigma \phi_e$</td>
<td>10-18 mrad</td>
<td>10-13 mrad</td>
</tr>
<tr>
<td>Timing Resolution; $\sigma t_{e\gamma}$</td>
<td>148 psec</td>
<td>~ 100 psec</td>
</tr>
<tr>
<td>Spectrometer Efficiency; ε_{e^+}</td>
<td>7-24 %</td>
<td>$\sim 40%$</td>
</tr>
</tbody>
</table>

(80% \times 50%)
Conclusions

- **MEG e⁺ Spectrometer** have run the first long-term experiment 2008.
- Unfortunately, several problems happened during the physics run, in particular, **HV discharge problem**.
- Due to discharge, **DC system was operational partially**, and thus the spectrometer performance was limited. **Inefficiency was particularly severe, i.e. statistics was limited.**
- Performance is estimated even it is limited, PDF’s for Signal and Background are obtained.

- Now, ready to discuss “**Physics Analysis**”.
- Spectrometer should be improved.
 Next Talk.
 Next to Next Talk.
backups
Signature and Backgrounds

• Signal
 - $E_e = E_\gamma = m_\mu/2 = 52.8\text{MeV}$
 - $\theta = 180\text{deg.}$
 - time coincidence

 ![Signal Diagram]

 Clear 2-body kinematics
 use μ^+ to avoid capture inside stopping target
 Background dominated by Accidental overlap
 - lower muon beam rate is better
 - DC muon beam is the best

• Background
 - radiative muon decay
 - accidental overlap

 ![Background Diagram]
COBRA Solenoid

uniform B

graded B

low energy e^+ quickly swept out

uniform B

graded B

constant bending radius independent of emission angles
Hit Rate in COBRA

![Graph showing hit rate in COBRA with different B-fields.](image-url)
MEG Drift Chamber
2008 Summary of MEG-DC

- **April**: maitainance
- **May**: install
- **June**: conditioning & Michel Run
- **July**: π^0 run
- **August**: discharge start
- **September**: Physics Run
- **October**: shutdown
- **November**: π^0 run
- **December**: discharge start

of operational plane:

- April: 32
- May: 28
- June: 27
- July: 24
- August: 21
- September: 18

Hajime NISHIGUCHI (KEK) "MEG2008 Positron Spectrometer" JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University
Discharge Studies

Hajime NISHIGUCHI (KEK) “MEG2008 Positron Spectrometer” JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University