MEG Run2008

バックグラウンド

日本物理学会
20/September/2008

Yusuke Uchiyama
University of Tokyo
MEG Run2008

• Finally we started physics run

• What can we achieve
 – With current achieved detector performance
 – With limited period (only with this year's data)

An example of MEG trigger event
Schedule

- Maintenance work
- Detector installation
- Evacuation, cooling, LXe transportation
- Purification
- Stability check
- Pi0 run
- Trigger setting, Background data
- Michel run
- MEG run
- Beam shut down

We've just started physics run!
Continue until end of this year
(12 weeks)
Summary of Detector performances

- Gamma energy 5.64% (in FWHM)
- Gamma timing 300ps
- Gamma position 12.2mm

- Positron energy 2.2%
- Positron timing 127ps
- Positron angle 14.5mrad

- $T_{e\gamma}$ 325ps
- $\Theta_{e\gamma}$ 23.3mrad

- 1.4 x FWHM for signal region for this study
Single Event Sensitivity

- Single event sensitivity of this year

\[
\text{S.E.S} = \frac{1}{N_\mu \cdot T \cdot \Omega/4\pi \cdot \epsilon_e \cdot \epsilon_\gamma} = \frac{1}{N_\mu (10^7) \cdot 4.8\times10^6 \cdot 0.09 \cdot (0.65 \cdot 0.5) \cdot (0.4 \cdot 0.7)} = 2.54 \times 10^{-12} / N_\mu (10^7/\text{sec})
\]

- \(N_\mu = 3 \times 10^7 : 8.46 \times 10^{-13} \)
- \(N_\mu = 6 \times 10^7 : 4.23 \times 10^{-13} \)

\(N_\mu \): average muon intensity

1 week = 4e5 sec
Accelerator status
DAQ dead time
Signal & Background

- signal
 - Back to back
 - Mono energetic: E_e = 52.8 MeV, E_g = 52.8 MeV
 - Coincidence in time

- Background
 - Prompt background
 - Accidental overlap
Prompt Background Estimation

- Prompt background (radiative muon decay)
- Branching ratio (B_{RD}) can be calculated from theoretical formula
- Rough estimation of B_{RD} with current resolutions
 \[B_{RD} \sim 5.8 \times 10^{-4} (\delta x)^2 (\delta y)[\delta x/3+\delta y](\delta z)^2 \]
 \[= 2.4 \times 10^{-14} \]

\[x : 2E_e / M_{\mu} \]
\[y : 2E_\gamma / M_{\mu} \]
\[Z : \pi - \theta_{e\gamma} \]
Accidental Background

- Background
 - Can estimate with

\[B_{\text{acc}} = R \cdot f_\mu^0 \cdot f_e^0 \cdot \left(\delta \omega / 4\pi \right) \cdot (2\delta t) \]

= \(N_\mu \) (DC beam)

Back to back

Time overlap

Accidental background is dominant background source
 - \(\gamma \) ray measurement is most important
Accidental Background

• Background
 - Can estimate with

\[B_{acc} = R \cdot f^0_\mu \cdot f^0_\gamma \cdot \left(\frac{\delta \omega}{4\pi} \right) \cdot (2\delta t) \]

 - Now we can measure photon yield with our detector

Main topic of this talk
• Measure the actual photon yield
• Estimate accidental BG with it
 • Total time
 • Detector resolution
 • BG rejection power
 • Beam intensity
Single Spectrum

- We took LXe self trigger data
 - Trigger requirement is only energy deposit in LXe
 - 3 sets of beam intensity (1x, 3x, 6x 10^7)
• High energy tail comes from
 - Incursion of RD photons due to resolution
 - High energy photon from AIF, Cosmic ray
 - Pile-up events
Pileup Identification

- Pileup events become dominant background source as increasing beam intensity

- The detector can identify pileup events by
 - Pattern of the light distribution
 - Time difference of every PMT
 - Waveform
Waveform Analysis

- Acquiring full waveform of all PMTs
 - Sampling at 1.6 GHz

- Apply high-pass digital filter
 - Originally to reduce slow component noise
 - It improves also the ability for high rate environment
 - Only 50ns integration range

\[\text{Integral region} \]

\[\text{c.f. With normal ADC, we used} \]
\[\text{~500ns gate width} \]
Pileup Rejection

• Inefficiency is estimated using MC (preliminary)

Beam intensity 3x10^7

of events

3 x10^7 : 4.8%
6 x10^7 : 9.6%

Pileup prob
1 x10^7 : 1.6%
3 x10^7 : 4.8%
6 x10^7 : 9.6%

Miss ID prob
10%

↓
efficiency
1 x10^7 : 88.6%
3 x10^7 : 85.7%
6 x10^7 : 81.4%

 Identified as pileup by
Light distribution
Time distribution
Waveform peak search

Identified as cosmic ray

All
After pileup+CR rejection

Pileup prob
1 x10^7 : 1.6%
3 x10^7 : 4.8%
6 x10^7 : 9.6%

+
Miss ID prob
10%

down

efficiency
1 x10^7 : 88.6%
3 x10^7 : 85.7%
6 x10^7 : 81.4%
Background Rate Estimation

- Rate in signal region
 - 1×10^7: 2.47 Hz
 - 3×10^7: 6.68 Hz
 - 6×10^7: 14.9 Hz

- Expected number of accidental BG
 - 1×10^7: 0.04
 - 3×10^7: 0.30
 - 6×10^7: 1.32
Prospect Sensitivity

- Sensitivity (90% C.L.)
 - $1 \times 10^7 : 6.5 \times 10^{-12}$
 - $3 \times 10^7 : 2.6 \times 10^{-12}$
 - $6 \times 10^7 : 1.8 \times 10^{-12}$

- BG are there in 6×10^7 intensity

- 3×10^7 intensity is suitable for this year
Prospect Sensitivity

- If we run with current condition for 2 years (100 weeks)
 - Expected number of accidental BG
 - $1 \times 10^7 : 0.30$
 - $3 \times 10^7 : 2.46$
 - $6 \times 10^7 : 10.9$
 - Sensitivity (90% C.L.)
 - $1 \times 10^7 : 9.4 \times 10^{-13}$
 - $3 \times 10^7 : 4.9 \times 10^{-13}$
 - $6 \times 10^7 : 4.3 \times 10^{-13}$
Analysis

- We are thinking of analysis with combination of blind analysis & likelihood analysis

- Blind analysis (Hidden signal box)
 - Hidden parameter set
 - (Ee, Eg, Teg, qeg) or (Eg, Teg) (under discussion)
 - Boundary: \(\pm 3\sigma \)
 - Able to estimate BG rate in signal region without data in the box
 - Projection on each parameter
 - Single spectrum
 - Maximum likelihood fit
 - Compare PDF with BG data

- Maximum likelihood analysis
 - \(P(x_i) = \frac{(N_{sig}S(x_i) + N_{RD}'(x_i) + N_{BG}(x_i))}{N} \)
 - \(N = N_{sig} + N_{RD} + N_{BG} \)
 - \(L(N_{sig}, N_{RD}) = \prod(P(x_i)) \)
 - Describe detector non-uniformity (position, angle dependence)
 - PDFs for different region
 - Analysis region: \(\pm 5\sigma \)
Summary

• Background estimation
 - Estimated background form g-ray single spectrum
 - Looked at the dependency on the beam intensity
 • Optimization of beam intensity (3 x 10^7)
 - Prospect sensitivity with Run2008 data
 • 2.6 x 10^{-12}

• Started physics data taking (Run2008)
 - We performed complete calibration runs
 • We are intensively working on analyzing these data
 • Our understanding of detector is growing
 • Detector performance is progressively improving
 - 12 weeks physics run this year
 - Good chance of discovery even with this years data
Summary

• Future prospect
 - Run2009 will start from June (long shutdown period)
 • Hardware modification
 - Upgrade of electronics (New version of waveform digitizer)
 • Better linearity, S/N, timing
 - Purity of LXe will be improved further
 - Maintenance work for full performance
 • Analysis
 - Complete calibration and reconstruction algorithm
 - Physics analysis of Run2008 data
 - Will take another 2 years to reach $1-2 \times 10^{-13}$ (MEG goal)
DAQ Electronics

- Waveform of all PMTs are recorded
 - DRS: waveform digitizer with switched capacitor array
 - 1.6 GHz sampling for LXe PMT
 - 1024 cells: 600ns window

- No ADC, TDC
Analysis

- We are thinking of analysis with combination of blind analysis & likelihood analysis

- Blind analysis (Hidden signal box)
 - Hidden parameter set
 - (Ee, Eg, Teg, qeg) or (Eg, Teg) (under discussion)
 - Boundary: ±3σ
 - Able to estimate BG rate in signal region without data in the box
 - Projection on each parameter
 - Single spectrum
 - Maximum likelihood fit
 - Compare PDF with BG data
Analysis: Likelihood Fit

- Maximum likelihood analysis
 - \(P(x_i) = \frac{(N_{\text{sig}}S(x_i) + N_{\text{RD}}S'(x_i) + N_{\text{BG}}B(x_i))}{N} \)
 - \(N = N_{\text{sig}} + N_{\text{RD}} + N_{\text{BG}} \)
 - \(L(N_{\text{sig}}, N_{\text{RD}}) = P(P(x_i)) \)

- Describe detector non-uniformity (position, angle dependence)
 - PDFs for different region

- Analysis region: +5s
Analysis : Likelihood Fit

• Maximum likelihood analysis
 – $P(x_i) = \frac{(N\text{sig}S(x_i) + N\text{RD}S'(x_i) + NB\text{GB}(x_i))}{N}$
 – $N = N\text{sig} + N\text{RD} + NB\text{G}$
 – $L(N\text{sig}, N\text{RD}) = P(P(x_i))$

• Describe detector non-uniformity (position, angle dependence)
 – PDFs for different region

• Analysis region : $\pm 5s$
Analysis: PDF

- **Signal PDFs**
 - Gamma: pi0 data
 - Positron: Michel data

- **Background PDFs**
 - Single spectrum
 - Flat for timing

- **RD PDFs**
 - Theoretical distribution
 - Convolved with known detector response

RD distribution 3 @ $\cos^2\theta_w = -0.998643$
MEG : $\mu \rightarrow e \gamma$ Search Experiment

- Search for Lepton-flavor violating muon decay : $\mu \rightarrow e + \gamma$
 - Clear evidence of new physics beyond the SM
- Expected sensitivity : B.R. $\sim 10^{-13}$
 - Can improve the present limit two orders of magnitude