MEG Run 2008 陽電子スペクトロメータ

西口 創 (KEK), 他 MEG Collaboration

日本物理学会秋季大会(2008/09/20-23), 於山形大学
The MEG Positron Spectrometer
Requirements for the Experiment

\[\mu^+ \rightarrow e^+ \gamma \]

signature

physics background

accidental background
Requirements for the Experiment

- Use DC muon beam
- Operational in High Rate
- Good Pile-up Rejection
- Excellent Resolutions
- γ-ray Suppression

$\mu^+ \rightarrow e^+ \gamma$

signature physics background accidental background
The MEG Positron Spectrometer

- Lateral View -

- Cross-sectional View -

Target
COBRA Solenoid
Drift Chamber
Timing Counter

20-23 Sep. 2008, JPS Meeting, Yamagata University
The MEG Positron Spectrometer

- **Must Be**
 - Operational with High Rate (~30MHz Muon Decay)
 - Graded B-field Solenoid (COBRA magnet)
 - Small Cell Drift Chamber (4.5mm cell spacing)
 - Very Light Material (**0.002X₀** in Fiducial Tracking Volume)
 - Open-frame Structure of Segmented Drift Chambers
 - Filled with Helium and Helium-based DC Active Gas
 - Very Thin Foil as a Cathode Plane
 - No Vertex Detector / No Other Tracking Devices
 - Very Good Timing Resolution
 - Fast Timing Counter with Track Extrapolation from Tracker
 - Very Good Vertex/Angular Resolution
 - Done by Only Trace Back from Tracker
Calibrations & Commissioning
Calibrations

- We need several calibration methods for the e^+ spectrometer

 - For Drift Chamber
 - Wire Misalignment (By using Michel e^+ tracks)
 - Timing Pedestal (By fitting arrival-time distribution)
 - Time-to-Distance (By using Michel e^+ tracks)
 - Absolute Momentum (By fitting Michel Spectrum)
 - Target Position (By extrapolating track from DC)

 - For Timing Counter
 - Gain calibration in Magnetic field
 - Relative Timing Calibration with LXe photon detector
Calibrations - Cont. -

2008 Crosses downstream: Displacement x10

2008 Crosses downstream: Displacement x10

B = 1.1T
θ = 5°-45°

Michel Spectra

without correction
radiative correction

20-23 Sep. 2008, JPS Meeting, Yamagata University
Commissioning

- The # of hardware components of the spectrometer is strongly limited
 - in consequence, operation and readout are made challenging and difficult.
 - *eg.* (in 2007) Several chambers were not operational due to defective protection for pure helium. Many channels were not connected properly at the patch-panel system due to defective contacts.
- Such many N/A channels affect drastically on not only the chamber operation but also the analysis.
 - It was necessary to add air doping
 - Tracking resolution/efficiency were affected by small number of measured points
- **It is NECESSARY to have a careful commissioning run.**
- For the “MEG Run 2008”, we had a dedicated run period, called “Michel Run” in the *runup* to the Physics Run.

- **Michel Run = “commissioning”, “calibrations”, “performance estimation”, and “background estimation”**
Performances
Momentum Resolution

- Endpoint is fitted to the convolution of “response function” and “Gaussian”, with three free parameters; “P_{edge}”, “σ_p” and “Normalization”.
- We need “response function”, could be produced by MC
 - taking into account “DC real situation”, “Trigger Condition” and “Radiative correction to the Michel spectrum”.

20-23 Sep. 2008, JPS Meeting, Yamagata University
Efficiencies

- DC Intrinsic Efficiency (~100%)
- Track Find/Reconstruction Efficiency
 - Design: ~50% (for all event)
 - Design: ~98% (for acceptable event)
- Spectrometer Efficiency
 - Design: ~65%
 - due to DC elec.
Applications
Track Extrapolation (1)

- Towards Stopping Target
 - Vertex Reconstruction
 - No Vertex Detector
 - Angular Blind to LXe
 - Only Track Extrapolation can reconstruct
 - e^+ Emission Angle Reconstruction

- Both are Necessary to judge Signal
Track Extrapolation (1)

Towards Stopping Target
- Vertex Reconstruction
 - No Vertex Detector
 - Angular Blind to LXe
- Only Track Extrapolation can reconstruct
- e^+ Emission Angle Reconstruction

Both are Necessary to judge Signal
Track Extrapolation (1)

- Towards Stopping Target
 - Vertex Reconstruction
 - No Vertex Detector
 - Angular Blind to LXe
 - Only Track Extrapolation can reconstruct
 - e^+ Emission Angle Reconstruction
- Both are Necessary to judge Signal

- LXe calorimeter
- μ^+
- Drift Chambers
- e^+ spectrometer

20-23 Sep. 2008, JPS Meeting, Yamagata University
Track Extrapolation (2)

- Towards Timing Counter
 - Flight-Length correction
 - Triggering Time given by TC
 - Muon Decay Time is unknown

- Impact Position Reconstruction
 - DC-TC Matching is required

- Both are Necessary to judge Signal

20-23 Sep. 2008, JPS Meeting, Yamagata University
Track Extrapolation (2)

- **Towards Timing Counter**
 - Flight-Length correction
 - Triggering Time given by TC
 - Muon Decay Time is unknown

- Impact Position Reconstruction
- DC-TC Matching is required
- Both are Necessary to judge Signal

- LXe calorimeter
- Drift Chambers
- e+ spectrometer
- Timing Counter hit
Run2008 (Commissioning Run)
pre- Run 2008 (Commissioning Run)

16-18/July 2008, we took “Michel Run” for calibration/commissioning
- 534 runs in total, ~3M events were acquired
- Two settings of muon-beam intensity were prepared same as 2007
 - normal: 3×10^7 muon/sec (346 runs, ~1.6M events)
 - low: 1×10^6 muon/sec (188 runs, ~1.3M events)
- DC conditions were very stable (much better than 2007)
 - most of planes were applied by 1840v w/o any trips
 - it was necessary to add an air contamination to avoid unwanted discharge

20-23 Sep. 2008, JPS Meeting, Yamagata University
Run 2008 (Performances/Resolution)

- Reconstructed Michel Spectrum and Estimated Momentum Resolution

- PRELIMINARY -
(MICHEL - RUN 2008)
Reconstructed Michel Spectrum and Estimated Momentum Resolution

$E_{\text{edge}} = 52.88 \pm 0.29 \text{ MeV/c}$

$\sigma_p = 551 \pm 79 \text{ keV/c}$
Run 2008 (Extrapolation/Resolution)

- **Vertex Resolution**
 - $\sigma_{x,y} = 1.8$ mm

- **Angular Resolution**
 - $\sigma_{\phi} = 0.6-7$ deg.
 - $\sigma_{\theta} = 0.3-4$ deg.
Run 2008 (Performances/Efficiencies)

- Efficiency Staging:

- Denominator Definition:
 - e^+ which contains more than 6 hits is counted as denominator
 - e^+ which achieves radius larger than 6-th cell is counted as denominator

- Summary of preliminary reconstruction efficiencies with 2 beam rate

<table>
<thead>
<tr>
<th></th>
<th>Track Finder</th>
<th>Track Fitting</th>
<th>after χ^2 cut</th>
<th>(after $xy/\theta\phi$ cut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michel 2008</td>
<td>98/97%</td>
<td>72/70%</td>
<td>65/60%</td>
<td>(45/32%)</td>
</tr>
</tbody>
</table>
Run2008 (Physics Run)
Run 2008 (Physics Run)

- MEG Physics Run Started on September 12th (last week !)
- We will continue 12 weeks of beam time till Christmas shutdown.
- Now we are trying:
 - trigger optimization
 - offline process starting
 - pre-selection study
 - PDF refining for MLH
 - background estimation
 - (detector studies)
Run 2008 (Physics Run)

- Spectrometer Prospects in Run 2008 (12 weeks beam-time).

<table>
<thead>
<tr>
<th>resolution</th>
<th>condition</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy resolution</td>
<td>2.2%</td>
<td>Acceptance</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>14.5%</td>
<td>Muon Rate</td>
</tr>
<tr>
<td>Timing resolution</td>
<td>127ps</td>
<td>Efficiency</td>
</tr>
</tbody>
</table>

- According to the easy estimation, better sensitivity than current experimental upper limit can be expected.

- Consideration based on the background estimation will be presented in the next talk (「MEG Run2008 バックグラウンド」内山雄祐)
Conclusion

- MEG Starts the First Physics Run in this year !!!
- We had a dedicated run period, called “Michel Run” in the runup to the Physics Run.
 - Detector Calibration (Drift Chamber, Timing Counter)
 - Spectrometer Calibration (Momentum, Timing)
 - Performance Estimation (Resolution, Efficiency)
 - Background Estimation
- Even this year’s (not perfect, very short) condition can achieve better sensitivity than the current experimental upper limit.
- now, physics data-taking is running !!
backup slides