MEG実験用低物質量 ドリフトチェンバーの実機製作

西口創@東京大学

東大素セ、PSI^A、チューリッヒ連邦工科大^B 大谷航、三原智、森俊則、山下了、J. Egger^A、D. Fahrni^A、 M. Hildebrandt^A、A. Hofer^A、P.-R. Kettle^A、 S. Ritt^A、M. Schneebeli^B 他 MEG Collaboration

Contents

- MEG experiment
- MEG Drift Chamber
- Making of DC
- Conclusion

MEG experiment

MEG experiment

Search experiment for $\mu^+ \rightarrow e^+\gamma$

- ► " $\mu \rightarrow e \nu \nu$ " ~ 100% (Normal μ decay in SM)
- ► " $\mu \rightarrow e\gamma$ " violates Lepton Flavor Conservation
- ► SUSY-GUT models predict higher branching ratio $Br(\mu \rightarrow e\gamma) = 10^{-11} \sim 10^{-15}$
- Sensitive to physics beyond the SM !!
- New experiment with a sensitivity of Br : 10⁻¹³~10⁻¹⁴ planned at Paul Scherrer Institut (PSI)
- Construction is progressing now, and related physics analysis study is also undergoing.
- ▶ 15aSB-9:モンテカルロシミュレーションを用いたMEG実験におけるmuon radiative decayの考察、久松康子他

MEG detector

Features

- The most intense DC muon beam
- Liquid Xenon photon detector
- Positron spectrometer with gradient magnetic field
- Thin super conducting magnet
- Thin drift chamber and timing counter for positron tracking
- Engineering run will start in early 2006

MEG Drift Chamber

Requirements for the Drift Chamber

► High rate

- the most intense DC muon beam
- muon stopping rate : 2.5×10⁷ ~ 10⁸ muon/sec
- COBRA magnet and segmented modular chamber
- High Resolution
 - very excellent sensitivity
 - ▶ good position resolution (300 μ m) is required for both direction (r,z)
 - vernier pad system for z-position measurement
 - Iow material (multiple scattering suppression)

COBRA spectrometer (COnstant Bending RAdius)

Multiple scattering in the spectrometer

Chamber structure

Making of MEG DC (1)

Making of MEG DC (2)

Making of MEG DC (3) - inner cathode frame -

Making of MEG DC (4) - inner cathode frame -

Inner cathode foil is mounted on the frame

Making of MEG DC (5) - cathode hood mount -

Making of MEG DC (6) - cathode hood mount -

Making of MEG DC (7)

Making of MEG DC (8) - cathode hood mount -

Making of MEG DC (9) - final 3 parts -

Conclusion

- MEG will start early 2006
- DC prototype study completed, we will start mass-production soon.
- Mass-production will be completed in 2005.
- Tracking algorithm study is undergoing in parallel.
- We've already gotten ~0.5% momentum resolution by the conservative LS method and KF both.
- Some other techniques is developing now.

extra transparencies

Signal sensitivity & Background

Signal $E_e = E_r = 52.8 \text{ MeV}$	Expected de resolution (F	etecter WHM)
$E_e = E_r = 52.8 \text{ MeV}$	•	
Back to back, in time	γ energy ΔE_{γ}	4.5 %
► Single event sensitivity	+ momentum Δp _e	0.8 %
N _µ =2.5x10 ⁷ /s, T~4x10 ⁷ s, Ω/4 π =0.09, ε_e =0.9, ε_{γ} =0.6 Sensitivity ~ 4.5 x 10 ⁻¹⁴	angular $\Delta \theta_{e\gamma}$	10 mrad
Backgrounds	timing Δt _{eγ}	140 psec
 Prompt background (Radiative muon decay) background rate : < 10⁻¹⁴ Accidental : (Michel decay + random γ) background rate : 2~4 x 10⁻¹⁴ accidental events : 0.6 Good energy, timing and position resolutions are required for γ e⁺ detector ! 		

cathode pads with vernier pattern

Results from prototypes

Spatial resolution (R-direction) $100 \sim 200 \ \mu m (\sigma)$

Trace back performance

Momentum reconstruction of Michel positron

Momentum reconstruction @ Michel positron

